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Abstract. The deterministic and stochastic Wentzell systems of the Baren-
blatt – Zheltov – Kochina equations, which describing the process of moisture
filtration in a hemisphere and on its boundary are studied. In the determin-

istic case, the unambiguous solvability of the initial problem for the Wentzel
system in a specific constructed Hilbert space is established. In the case of
the stochastic system, the Nelson – Glicklich derivative theory is used and

a stochastic solution is constructed, which allows us to determine the quan-
titative change in the geochemical regime of groundwater under pressureless
filtration.

Introduction

Moisture filtration as well as its flow, evaporation, falling, etc. is one of the
moisture transfer processes. Let Ω ⊂ Rn, n ≥ 2, be a manifold with edge Γ. The
system of two Barenblatt – Zheltov – Kochina equations [1], which describing the
moisture filtration process is defined on the compact Ω ∪ Γ

(λ−∆)ut = α∆u+ βu, u = u(t, x), (t, x) ∈ R× Ω, (0.1)

(λ−∆)vt = γ∆v +
∂u

∂ν
+ δv, v = v(t, x), (t, x) ∈ R× Γ, (0.2)

tr u = v, on R× Γ. (0.3)

Here the symbol ∆ in (0.1) denotes the Laplace – Beltrami operator on the smooth
Riemannian manifold Ω, and in (0.2) the same symbol denotes the Laplace –
Beltrami operator on the smooth Riemannian manifold Γ. The symbol ν =
ν(t, x), (t, x) ∈ R × Γ, denotes the external to R × Γ normal to R × Ω. The
parameters α, λ, β, γ, δ ∈ R characterize the medium.

We will study the solvability of the system (0.1), (0.2) in the case: Ω = {(θ, φ) :
θ ∈ [0, π2 ], φ ∈ [0, 2π]} is a hemisphere in R3, and Γ = {φ : φ ∈ [0, 2π)} is the edge
of the hemisphere. In this case (0.1), (0.2) is transformed to the form

(λ−∆θ,φ)ut = α∆θ,φu+ βu, u = u(t, θ, φ), (t, θ, φ) ∈ R× Ω, (0.4)
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(λ−∆φ)vt = γ∆φv + ∂θu+ δv, v = v(t, φ), (t, φ) ∈ R× Γ, (0.5)

where the Laplace – Beltrami operator ∆θ,φ on the hemisphere and the Laplace –
Beltrami operator ∆φ on the edge of the hemisphere have the following form

∆θ,φ =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2
,

∆φ =
1

sin2 θ

∂2

∂φ2
, ∂θ =

∂

∂θ

∣∣∣∣
θ=π

2

.

(0.6)

To this system we add the matching condition (0.3) and equip it with initial
conditions

u(0, θ, φ) = u0(θ, φ), v(0, φ) = v0(φ). (0.7)

Let us call the solution of the problem (0.3) – (0.7) the deterministic solution
of the Wentzell system. If we replace the functions u and v, defined by Ω and Γ
respectively, on η = η(t) and κ = κ(t) are a stochastic processes on the interval
(0, τ), we obtain stochastic Wentzell system, where the derivative of stochastic
processes is understand by the Nelson – Gliklikh derivative of the process. It asso-
ciated with correct definition of ”white noise” as one-dimensional Wiener process
(see, for example., [8, 9, 12]). Let us call the solution of the corresponding problem
the stochastic solution of the Wentzell system.

The paper, besides the introduction and the list of references, contains three
parts. In the first part, the existence and uniqueness of the deterministic system of
Wentzell equations in the hemisphere and on its edge are considered. The second
part contains abstract reasoning consisting in constructing the space of (H-valued)
K-”noise”. The third part contains the proof of the existence and uniqueness of
the stochastic Wentzell system of equations in the hemisphere and on its edge.

1. Wentzell’s deterministic system

If θk = k(k + 1) eigenvalues of the Laplace – Beltrami operator ∆θ,φ, then

Y m
k (φ, θ) =


Pm
k (cos θ) cosmφ, m = 0, · · · , k;

P
|m|
k (cos θ) sin |m|φ, m = −k, · · · ,−1

are the corresponding eigenfunctions orthonormalized with respect to the scalar
product. Here,

Pk(t) =
1

2kk!

dk

dtk
dtk(t2 − 1)k

is a Lejandre polynomial of degree k, and

P
|m|
k (t) = (1− t2)

|m|
2
d|m|

dt|m|Pk(t)

is the attached Lejandre polynomial. The scalar product is calculated using the
following formula

⟨Y m1

k1
, Y m2

k2
⟩ =

2π∫
0

cosm1φ cosm2φdφ

1∫
−1

Pm1

k1
(t)Pm2

k2
(t)dt.
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Consider the following series

u =

∞∑
k=1

k∑
m=0

exp

(
t
β − αk2

λ+ k2

)(
am,k cosmφ+ bm,k sinmφ

)
Pm
k (cos θ), (1.1)

where

am,k =

2π∫
0

u0(θ, φ) cosmφdφ

π
2∫

0

Pm
k (0) sin θdθ,

bm,k =

2π∫
0

u0(θ, φ) sinmφdφ

π
2∫

0

Pm
k (0) sin θdθ.

It is easy to see that the series constructed above is a formal solution of the
equation (0.4). Moreover, if the series in (1.1) converge uniformly, then we have a
solution to the problem (0.4), (0.7), where ∂θu = 0. Given this, we can construct
a solution to the problem (0.5), (0.7)

v =

∞∑
k=1

exp

(
t
δ − γk2

λ+ k2

)(
ck cos kφ+ dk sin kφ

)
, (1.2)

where

ck =

2π∫
0

v0(φ) cos kφdφ, dk =

2π∫
0

v0(φ) sin kφdφ.

In the case of the matching condition (0.3) we obtain the following equation

∞∑
k=1

k∑
m=0

exp

(
t
β − αk2

λ+ k2

)(
am,k cosmφ+ bm,k sinmφ

)
Pm
k (cos θ)

∣∣∣∣
θ=π

2

=

∞∑
k=1

exp

(
t
δ − γk2

λ+ k2

)(
ck cos kφ+ dk sin kφ

)
.

Considering that α = γ, β = δ we obtain equalivent system of equations

k∑
m=0

(
am,k cosmφ+bm,k sinmφ

)
Pm
k (0) = ck cos kφ+dk sin kφ, wherem+n = 2k.
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Substituting the integral coefficients we obtain an equivalent system

k∑
m=0

( 2π∫
0

u0(θ, φ) cosmφdφ

π
2∫

0

Pm
k (0) sin θdθ cosmφ

+

2π∫
0

u0(θ, φ) sinmφdφ

π
2∫

0

Pm
k (0) sin θdθ sinmφ

)
Pm
k (0)

=

2π∫
0

v0(φ) cos kφdφ cos kφ+

2π∫
0

v0(φ) sin kφdφ sin kφ.

Here the auxiliary integrals are calculated by the formula
π
2∫

0

Pm
k (0) sin θdθ = Pm

k (0)

π
2∫

0

sin θdθ = Pm
k (0),

and system has the following form

k∑
m=0

( 2π∫
0

u0(θ, φ) cosmφdφ cosmφ+

2π∫
0

u0(θ, φ) sinmφdφ sinmφ

)(
Pm
k (0)

)2

=

2π∫
0

v0(φ) cos kφdφ cos kφ+

2π∫
0

v0(φ) sin kφdφ sin kφ.

(1.3)

Thus in the case α = γ, β = δ and the obtained condition (1.3) the solutions to
the problem (0.5) – (0.7) will satisfy the (0.3) matching condition.

Lineal closure span{Pm
k (cos θ) sinmφ, Pm

k (cos θ) cosmφ: m, k ∈ N\{1}, θ ∈
[0, π2 ], φ ∈ [0, 2π)} generated by the scalar product

⟨φ,ψ⟩ =
2π∫
0

π
2∫

0

φ(θ, φ)ψ(θ, φ) sin θdθdφ,

we denote by the symbol A(Ω). Next, the closure of the span{sin kφ, cos kφ: k ∈
N, φ ∈ [0, 2π)} by the norm, generated by the scalar product

⟨ξ, ψ⟩ =
2π∫
0

ξ(φ)ψ(φ)dφ,

denote by the symbol A(Γ).
Thus, the following theorem holds.

Theorem 1.1. For any u0 ∈ A(Ω) and v0 ∈ A(Γ) such that (0.3) is satisfied, and
for the coefficients α, β, γ, δ, λ ∈ R, such that the following condition is satisfied
α = γ, β = δ, and λ ̸= k2, where k ∈ N, and condition (1.3) is fulfilled, there
exists a single solution (u, v) ∈ C∞(R;A(Ω)⊕A(Γ)) of the problem (0.3) – (0.5).
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2. The space of ”noises”

Let Ω ≡ (Ω,A, P ) be a full probability space; R be set of real numbers endowed
with the Borel σ-algebra. By a random variable we mean measurable mapping
ξ : Ω → R. A set of random variables {ξ : Eξ = 0, Dξ ≤ +∞}, the mathematical
expectation of which is equal to zero, and the dispersion is finite, forms the Hilbert
space L2 with the scalar product (ξ1, ξ2) = Eξ1ξ2 and the norm ∥ξ∥2L2

= Dξ.
Consider the set J ⊂ R and the following two mappings. First, f : J → L2,

associates each t ∈ J with a random variable ξ ∈ L2. Second, g : L2 × Ω → R,
associates each pair (ξ, ω) with a point ξ(ω) ∈ R.

A mapping η : J × Ω → R, having the form η = η(t, ω) = g(f(t), ω), is called
an (one-dimensional) stochastic process. For each fixed t ∈ J , the value of
the stochastic process η = η(t, ·) is a random value, i.e. η = η(t, ·) ∈ L2, which is
called a section of a stochastic process at t ∈ J . For each fixed ω ∈ Ω, the function
η = η(·, ω) is called a (sample) path of a stochastic process , corresponding to the
elementary event result ω ∈ Ω. The paths are also called realizations or sample
functions of a random process.

Usually, when this does not lead to ambiguity, the dependence of η(t, ω) on ω
is not specified and a random process is denoted by η(t).

Let be an interval J ⊂ R, then the stochastic process η = η(t), t ∈ J is called
continuous, if all its paths are almost sure continuos.

The set of continuous stochastic processes forms a Banach space, which we
denote by CL2, where

∥η∥2CL2
= supDη(t, ω).

Let A0 be a σ-subalgebra of the σ-algebra A. Construct the subspace L0
2 ⊂ L2

of random variables measurable with respect to A0. Denote by Π: L2 → L0
2 an

orthoprojector.
For any ξ ∈ L2, a random value of Πξ is called aconditional expectation of a

random value of ξ with respect to A0 and is denoted by E(ξ|A0).
Fix η ∈ CL2 and t ∈ J . Denote by Nη

t a σ-algebra generated by a random
value of η(t), and denote by Eη

t = E(·|Nη
t ) a conditional expectation with respect

to Nη
t .

Let η ∈ CL2, the Nelson–Gliklikh derivative
◦
η of the stochastic process η(t) at

the point t ∈ J is called a random variable

◦
η (t, ·) = 1

2
{ lim
∆t→0+

Eη
t

(
η(t+∆t, ·)− η(t, ·)

∆t

)
+ lim

∆t→0+
Eη

t

(
η(t, ·)− η(t−∆t, ·)

∆t

)
},

if the limits exist in the sense of the uniform metric on R.
If the Nelson–Gliklikh derivatives

◦
η (t, ·) of the stochastic process η(t) exist in

all (or almost all) points of the interval J , then we say that the Nelson–Gliklikh

derivative
◦
η (t, ·) exist on J (almost sure on J ).

As an example, consider the Nelson–Gliklikh derivative for the Wiener pro-
cess β(t) (see, for example, [6]), describing Brownian motion in the Einstein-
Smoluchowski model

◦
β (t) =

β(t)

2t
, t ∈ R+.
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Note that the set of continuous stochastic processes having the derivative
◦
η (t, ·)

forms the Banach space C1L2 with the norm

∥η∥2C1L2
= sup

J

(
Dη(t, ω) +D

◦
η (t, ω)

)
.

Introduce the space ClL2, l ∈ {0} ∪ N, of random processes from CL2, whose
paths are differentiable (almost sure) by Nelson–Gliklikh on J up to the order l
inclusively, define the norm in the space by the following formula:

∥η∥2ClL2
= sup

J

( l∑
k=0

D
◦ l
η (t, ω)

)
.

By definition, we understand the Nelson–Gliklikh derivative of the order zero
◦ 0
η

as the original stochastic process, by the space ClL2, l ∈ {0} ∪ N we understand
the space of K–”noises”.

Let us consider a real separable Hilbert space U (F) with orthonormal basis {φk}
({ψk}). Introduce a monotonic sequence K = {λk} ⊂ R such that

∞∑
k=1

λ2k < ∞.

Denote by UKL2 (FKL2) the Hilbert space, which is a completion of the linear
span of K-random variables

ξ =

∞∑
k=1

λkξkφk, ξk ∈ L2

(
ζ =

∞∑
k=1

µkζkψk ζk ∈ L2

)
by the norm

∥ξ∥2U =

∞∑
k=1

λ2kDξk,

(
∥ζ∥2F =

∞∑
k=1

µ2
kDζk

)
.

Note that for existence of a K-random variable ξ ∈ UKL2 (ζ ∈ FKL2) it is
enough to consider a sequence of random variables {ξk} ⊂ L2 ({ζk} ⊂ L2) having
uniformly bounded dispersions Dξk ≤ Const (Dζk ≤ Const), k ∈ N.

Construct the space of differentiable K–”noises”. Consider the inteval (ϵ, τ) ⊂
R. A mapping η : (ϵ, τ) → UKL2 given by the formula

η(t) =

∞∑
k=1

λkξk(t)φk,

where the sequence {ξk} ⊂ CL2, is called a U-valued continuous stochastic K-
process, if the series on the right converges uniformly on any compact in J by the
norm ∥·∥U and paths of the process η = η(t) are almost sure continuous.

A continuous stochastic K-process

◦
η (t) =

∞∑
k=1

λk
◦
ξk (t)φk, (2.1)

is called continously differentiable by Nelson–Gliklikh on J , if the series converges

uniformly on any compact in J by the norm ∥·∥U and paths of the process
◦
η=

◦
η (t)

are almost sure continuous.
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Denote by Cl(J ,UKL2), l ∈ {0} ∪ N the space of differentiable K–”noises”,
whose paths almost sure differentiable by Nelson–Gliklikh on J up to the order l
inclusively, with the following norm:

∥η∥2Cl(J ,UKL2)
= sup

J

( ∞∑
k=0

λ2k

l∑
j=1

D
◦ j
η

)
.

An example of continously differentiable by Nelson–Gliklikh up to the order l
inclusively K-process is Wiener K-process (see, for example, [6])

WK(t) =

∞∑
k=1

λkβk(t)φk

where {βk} ⊂ ClL2 is a sequence of Brownian motions on R+.
Similarly, the space of Cl(J ,FKL2), i.e. differentiable K–”noises” on FKL2,

are constructed.

3. Wentzell’s stochastic system

Let A : U → F be a linear operator. By the formula

Aξ =

∞∑
k=1

λkξkAφk (3.1)

set the linear operator A : UKL2 → FKL2, and if the series in the right-hand side
of (3.1) converges (in the metric FKL2), then ξ ∈ domA, and if it diverges, then ξ /∈
domA. Traditionally, the spaces of linear continuous operators L(UKL2;FKL2)
and linear closed densely defined operators are defined. The following holds

Lemma 3.1. (i) Operator A ∈ L(U;F) exactly when A ∈ L(UKL2;FKL2).
As you can easily see,

∥Aξ∥F ≤
∞∑
k=1

λ2kDξk∥Aφk∥2F ≤ const

∞∑
k=1

λ2kDξk = const ∥ξ∥|U.

(ii) Operator A ∈ Cl(U;F) exactly when A ∈ Cl(UKL2;FKL2).

For simplicity’s sake, let U = {u ∈ W 2
2 (Ω) ⊕W 2

2 (Γ) : ∂θu = 0}, F = L2(Ω) ⊕
L2(Γ). Next, following the algorithm above, construct the spaces of random K-
values . Random K-value ξ ∈ UKL2 has the form

η =

∞∑
k=1

λkξkφk, κ =

∞∑
k=1

µkξkψk (3.2)

where {φk} is the family of eigenfunctions of the Laplace – Beltrami operator
∆θ,φ ∈ L(U;F) orthonormalized in the sense of the scalar product ⟨·, ·⟩ of L2(Ω);
{ψk} is the family of eigenfunctions of the Laplace – Beltrami operator ∆φ ∈
L(U;F) orthonormalized in the sense of the scalar product ⟨·, ·⟩ of L2(Γ). Consider
the linear stochastic Wentzel system of the moisture filtration equation in the
hemisphere and at its edge. In this case (0.3) – (0.5) is transformed to the form

(λ−∆θ,φ)ηt = α∆θ,φη + βη, η ∈ C∞(R+;UKL2), (3.3)
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(λ−∆φ)κt = γ∆φκ+ ∂θκ+ δκ, κ ∈ C∞(R+;UKL2), (3.4)

where

∆θ,φ =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2
,

∆φ =
∂2

∂φ2
, ∂θ =

∂

∂θ

∣∣∣∣
θ=π

2

.

We add a matching condition to this system and supply it with initial conditions

η(0) = η0, κ(0) = κ0. (3.5)

Let us call the solution of the problem (3.3)-(3.5) the stochastic solution of the
Wentzell system.

Thus, the following theorem holds.

Theorem 3.2. For any u0 ∈ A(Ω) and v0 ∈ A(Γ) such that (0.3) is satisfied, and
for the coefficients α, β, γ, δ, λ ∈ R, such that the following condition is satisfied
α = γ, β = δ, and λ ̸= k2, where k ∈ N, and condition (1.3) is fulfilled, there
exists a single solution (η, κ) ∈ C∞(R;UKL2) of the stochastic Wentzell problem
(0.3) – (0.5).

Conclusion

We constructed an solution for the deterministic and stochastic Wentzell system
of moisture filtration equation on the hemisphere and on its edge.For this purpose,
we used a new approach to the study of the stochastic model with ”white noise”,
which we understand as the Nelson–Gliklikh derivative of one-dimensional Wiener
process. Further, we plan to continue the results of the paper by applying the
Wentzell boundary conditions in directions related to [15].

The research was funded by the Russian Science Foundation (project No. 23-
21-10056).
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