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Abstract. In this paper we purpose a Stochastic Petri Net based approach

for analysis of communication system with fuzzy sets. There are two stages
to the method that is being given. In terms of transition firing rates, the first

stage is identical to that of regular stochastic petri nets with steady-state

probability and continuous time Markov chain (CTMC) generated. Fuzzy
steady state probabilities are computed in the second step after the transi-

tion firing rates are represented by triangular fuzzy numbers. A numerical

example of communication system considered to analyse the pertinence of
proposed method. The significance of this method is to study the dimensions

of uncertainty and stochastic variability in system modelling.

1. Introduction

The Introduction of Stochastic Petri Net, [12] and generalized stochastic Petri
net (GSPN) by [1] as a high level representations of Markov Chains, contributed
a major result in methodological performance evaluation in the 1980’s. [2] pre-
sented a hierarchical modelling approach that combines queuing network models
and GSPNs for the solution of complex models of system behaviour Stochastic
Petri Net models were proposed by researchers active in the applied stochastic
modelling field, with the goal of developing a tool which allowed in the integration
of formal description. The transition firing time is usually described by a Proba-
bilistic distribution and commonly exponential distributions are used. Stochastic
petri net acts as a simple and effective method of analysing any system.

The Organization of the paper is as follows, In Section 2, a literature review
on PN’s is given. In Section 3, the formal definition of stochastic Fuzzy PN’s is
explained. In Section 4, the presented approach is given in detail. In Section 5, a
numerical representation of presented approach for a Communication Protocol is
given.

2. Fuzziness in Petri Nets

Fuzzy-time Petri Nets, which are based on the fuzzy enabling duration with the
transition of Petri Nets, were first introduced by Valleto, Courvoisier, and Mayeux
in 1989. According to [11], the time Petri Nets are defined as the fuzzy intervals
with transitions that are associated with the enabling duration. [14] suggested
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fuzzy-timing high-level Petri Nets for simulating communication protocols. Based
on the possibility theory, he developed fuzzy theoretic functions of time, including
fuzzy time stamp, fuzzy enabling time, fuzzy occurrence time, and fuzzy delay.
There was use of triangular possibility distributions. Fuzzy timed Petri Nets are
a novel variation of fuzzy Petri Nets that were proposed by Pedrycz and Camargo
(2003). The time factor at the place and transition levels is incorporated into the
net structure, which impacts the net performance in terms of input and output
place marking distribution at the marking level as well as transition firing. A
fuzzy timed Petri Net model was provided by [23], as well as [24] in which the
reachability state graph provides the basis for the model’s performance analysis.

3. Stochastic Petri Nets

A Petri Net is a bipartite directed graph represented by a quadruple Petri Net =
(P, T, Pr, Po) where P = {p1, p2, p3, . . . , pn} is a finite set of places, T = {t1, t2, t3,
. . . , tm} is a finite set of transitions. Pr(p, t) is a mapping P × T → {0, 1} marked
as an arrow diagram with directions from places to transitions. Po(t, p) is a map-
ping marked as an arrow diagram with directions from transitions to places.

The marking m is a function m : P → N identified with a multiset on P which
can be seen also as a vector Nnp . A transition t is enabled in marking m if and
only if m(p) ≥ I(p, t), ∀p ∈ P where m(p) represents the number of tokens in place
p in marking m. Enabled transitions may fire, so that the firing of transition t in
marking m yields a new marking m′ = m + c · σ. The firing of a sequence σ of
transitions enabled at m and yielding m′ is denoted as m[σ⟩m′

A Stochastic Petri Net (SPN) is a quadruple SPN = (PN,m0, λ,Π) where m0 :
P → N is a multiset on P representing the initial marking, λ = (λ0, λ1, . . . , λn) is
a numerous firing rates connected with transitions, and Π : T → N is a priority
function that maps every transition to a natural number.

An ordinary continuous-time stochastic Petri Net is a Petri Net with a set of
positive, finite, and exponentially distributed firing rates, λ = {λ1, λ2, . . . , λm},
associated with all its transitions. An enabled transition can fire after an expo-
nentially distributed time delay with parameter 1/λ elapses. Live and bounded
Stochastic Petri Nets are isomorphic to continuous-time Markov Chains due to
the memoryless property of exponential distribution [12]. This property makes it
possible to analyse stochastic Petri Nets and determine some significant perfor-
mance measures. The markings on the reachability graph represent the state of
the Markov Chain, while the exponential firing rates of the transitions in the sto-
chastic Petri Net represent the state transition rates. Performance measures are
computed by solving a system of linear equations that represent the Markov Chain.
When a transition is activated at marking m in a stochastic Petri Net, the tokens
flow based on the input and output functions. The Markov process is obtained
by giving the rate of the corresponding transition to each arc in the reachability
graph R(m0). The steady-state probability distribution, Π = (π0, π1, . . . , πq), of a
Stochastic Petri Net is obtained by solving a linear system.
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ΠA = 0,

q−1∑
i=0

Πi = 1 (3.1)

Where, A = (aij)q×q is the transition rate matrix. For i = 0, 1, . . . , q − 1, A’s i-th
row elements, (i.e., aij), j = 0, 1, . . . , q − 1 are determined as follows:

(1) If j ̸= i, aij is the sum of all outgoing arcs from state mi to mj .

(2) Since any row elements in A satisfies
∑q−1

j=0 aij = 0, then aii = −
∑q−1

j ̸=i aij ,
where aij represents the sum of firing rates of transitions enabled at mi,
i.e., transition rates leaving state mi.

From the steady-state distribution Π and transition firing rates λ, the required
performance indices of the system modelled by Stochastic Petri Net can be ob-
tained.

SPN is a timed transition Petri Net with atomic firing and all transition delays
are exponentially distributed. Generalised Stochastic Petri Nets (GSPN) which is
basically SPN with two kinds of transition delays, one is immediate firing and other
one is exponential time firing. SPN are isomorphic to continuous time Markov
Chain (CTMC). SPN’s are Petri Net in which each transition is presumed to fire
after a certain amount of time (firing time) has passed since it was enabled. SPN
assumes that there delay as random variables with a negative exponential distri-
bution.

An SPN model’s operations can be viewed in two ways. When a new marking
is inserted, the first means that each enabled transition samples an instance of the
random firing delay from the associated Probability distribution function (Pdf).
The structural properties of the reachability graph and labelling arcs obtained with
the firing rate of the transition whose firing causes the marking transformation are
identical, and the identity of the reachability sets implies that the structural prop-
erties of the reachability graph and labelling arcs obtained with the firing rate of
the transition whose firing causes the marking transformation are identical. At the
end of the firing time, tokens are withdrawn from its input locations and deposited
in its output places. The number of tokens in the flow is determined by the input
and output functions. The Markov process is created by assigning the rate of the
corresponding transition to each arc after building the reachability graph R(m0).

4. CTMC (Continuous time Markov Chain) [Bause]

A CTMC is a discrete state Markov process with a state that can change at
any time.

The stochastic process {X(t)} forms a continuous-time Markov Chain if for all
integers n and for any sequence t0, t1, t2, . . . , tn, tn+1 with t0 < t1 < · · · < tn <
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tn+1 we have

P{X(tn+1) = xn+1, x(t0) = x0, x(t1) = x1, . . . , x(tn) = xn}
= P{X(tn+1) = xn+1 | x(tn) = xn}

A homogeneous CTMC is represented by a collection of states and an infinitesi-
mal generator matrix Ai where Aij , i ̸= j is the exponentially distributed transition
rate between states xi, xj −Aij is the parameter of the exponential distribution of
the sojourn time in state xi, where

Aij = −
m−1∑
j ̸=i

Aij , where (aij)m×m. (4.1)

The rate of exponential distribution associated with the state-to-state transi-
tion is represented by the off-diagonal elements of the transition matrix A, which
is a square matrix of order m. The principal diagonal elements are selected in such
a way that the elements of each row sum to zero.

Theorem 4.1. [19] In a finite homogeneous, irreducible CTMC, the limiting prob-
abilities {πi} always exist and are independent of the initial probability distribution.
Moreover, {πi} is also a stationary probability distribution which can be calculated
from solving the set of equations ΠA = 0;

∑n
i=0 πi = 1. The necessary per-

formance indices of the system described by the SPN can be determined from the
steady-state distribution π and transition firing rates λ.

5. SPN with Fuzzy Parameter

The exponential representation of activity dimensions, such as signals, messages,
and transmitters, is achieved in the conventional Markov technique and SPNs by
the use of λ, which is determined statistically from clean data with a confidence
level based on firing and is recognized as a constant value. In this communication
system, fuzzy steady-state probabilities are obtained by applying fuzzified param-
eters to stochastic PNs, which are based on the fuzzification of transition firing
rates. We present our approach, with the important concepts about fuzzy sets
[18],[21],[16].

6. Fuzzy α-Cut

A fuzzy set Ã on a universal set X can be defined by its membership function

µÃ : X → [0, 1] (6.1)

where µÃ(x) defines the membership of element x in fuzzy set Ã.

A real value µÃ(x) in [0, 1] is assigned to each element x ∈ X, we represent for

example, the fuzzy set for a triangular fuzzy number denoted by Ã = ⟨a,m, b⟩,
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where a ≤ m ≤ b,

µÃ(x) =


0 if x ≤ a
x−a
m−a if a ≤ x ≤ m
b−x
b−m if m ≤ x ≤ b

0 if x ≥ b

The α-cut of a fuzzy set Ã, denoted by Aα, is the crisp set composed of all elements
x of the universe of discourse X for which the membership is greater than or equal
to α, i.e.,

Aα = {x ∈ X | Ã(x) ≥ α},

where α is a parameter in the range 0 ≤ α ≤ 1

Figure 1. α-cut of Fuzzy Number

With the introduction of α-cuts, the confidence interval defined by α-cuts are
written as

Ã = [aL(α) aR(α) ] and B̃ = [bL(α) bR(α) ]

Then basic fuzzy operations can be done by using the following equations;
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Ã(α) + B̃(α) = [aL(α) + bL(α) , aR(α) + bR(α) ] (6.2)

Ã(α) − B̃(α) = [aL(α) − bR(α) , aR(α) − bL(α) ] (6.3)

Ã(α) · B̃(α) = [C(α), d(α)] (6.4)

C(α) = min{aL(α)bL(α) , aL(α)bR(α) , aR(α)bL(α) , aR(α)bR(α)} (6.5)

d(α) = max{aL(α)bL(α) , aL(α)bR(α) , aR(α)bL(α) , aR(α)bR(α)} (6.6)

Ã(α)/B̃(α) = [aL(α) , bL(α) ] · [1/bR(α) , 1/bL(α) ] (6.7)

When Ã(α)/B̃(α), provided that zero does not belong to B̃(α) for all α. Live and
bounded SPNs are isomorphic to CTMC due to the memoryless property of expo-
nential distribution [12].

In our analysis description of exponentially distributed transition firing rates as
triangular fuzzy numbers to take in to the consideration of both randomness and
fuzziness.

The exponential E(λ) has density

f(x;λ) =

{
λe−λx if x ≥ 0

0 otherwise
(6.8)

The mean and variance of E(λ) are 1
λ and 1

λ2 , respectively. The fuzzy mean
(variance) is the fuzzification of the crisp mean (variance). The conditional prob-
ability of a fuzzy event ‘A’ given a fuzzy event B is defined by [19] as

P̃ (A | B) =
P̃ (A ·B)

P̃ (B)
, P̃ (B) > 0 (6.9)

Therefore,Our method is a two-stage modelling approach. The first stage is
finding steady state distributions parametrically using equation (3.1) and numeric
results of πi’s are calculated. In the second stage, each steady state probability,
πi, is expanded as a function of λi. The stochastic nature of the system is crisp.
The probability statement of the memoryless property of the crisp exponential is

P [X ≥ t+ τ | X ≥ t] = P [X ≥ τ ] (6.10)

So,

P [X ≥ t+ τ | X > t](α) =

{∫∞
T

λe−λx dx

λ ∈ λ̄(α)

}
(6.11)

By fuzzy calculation theory (Zadeh 1998, Buckley 2005), to find the α-cuts of
the fuzzy steady state probabilities, we solve an optimization problem which gives
the feasible solution.

The procedure to calculate the fuzzy steady state probabilities is as follows:

(1) Model a communication system using a SPN with exponential time delays
with transitions.
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(2) Generate the reachability graph and label all states of corresponding tran-
sition.

(3) Find the steady state probabilities πi and draw the Markov Chain of the
SPN.

(4) Use πi’s obtained in (3) as triangular fuzzy numbers.
(5) Compare the fuzzy steady state probabilities by using equations (6.1) –

(6.6) in terms of α-cuts.
(6) For each πi, the maximum and minimum value (α = 0 value) must be in

the interval [0,1]. If α = 0 each πi does satisfy this, the result is feasible.
If not, then continue the optimization process which is restricted to the
interval [0,1].

(7) If the α-cut representation for the fuzzy steady state probability is πi =

[π
−(α)
i , π

+(α)
i ], where i = 1, 2, . . . , n, and n is the number of states. Then

the Linear Programming Problem (LPP) is

Minimize Z = α
Subject to

π
+(α)
i ≤ 1

π
−(α)
i ≥ 0

0 ≤ α ≤ 1

π
−(α)
i ≤ π

+(α)
i

In the next section, a numerical example of a communication system of a stochas-
tic Petri Net is illustrated with our approach.

Example of a Communication System
For modeling and analysis of a communication system, stochastic variability and
α-cut representation are represented using SPNs in conjunction with fuzzy set
theory. In this section, a communication system is selected from ”Falko Bause
and Pieter Kritzinger (2013) SPN – An introduction to the theory,” which is
illustrated in Fig. 2.

Figure 2. PN of Simple Communication System
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Figure 3. Communication Protocol

Consider the Communication Network between the two processes—one shown
as the sender and the other as the recipient in Fig. 3. When a message is received,
the receiver sends an Ack back to the sender. The sender sends messages to a
buffer, which the receiver retrieves. The sender starts processing and transmitting
a new message after getting the receiver’s Ack. Suppose that the sender takes
2 - time units to send a message to the buffer, 1 unit time to receive the Ack,
and 1 unit time to process the next message. The receiver takes 3 - unit time to
process a new message and 1 unit time to send back an Ack. The receiver takes
again 2 - unit time to get a message from the buffer and a received message, the
communication protocol is given in Fig. 3.

Figure 4. Reachability Graph of the SPN of Fig 1.
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Figure 5. Markov chain of the SPN

In the given SPN (Fig. 2), transition t1 is enabled at M0 = (1, 0, 0, 0, 0). The
time elapsed until t1 fires is exponentially distributed with rate λ1 (the average
time for t1 to fire is 1

λ1
). Once t1 has fired, using the firing rule of PNs, we obtain

marking M1 = (0, 1, 1, 0, 0). At M1, t2 and t3 are concurrently enabled. Based on
firing of t2 and t3, the markings are given in Fig. 4.

If transition t2 fires first, the SPN changes to marking M2 = (0, 0, 1, 1, 0). If
t3 fires before t2, we set the marking M3 = (0, 1, 0, 0, 1). The next marking thus
depends on which transition fires. The performance or quantitative analysis of
SPNs can be carried out straight forwarding by analyzing the corresponding Mar-
kovian process. Fig. 4 depicts the reachability graph of the SPN in Fig. 2. The
corresponding Markov Chain (MC) with λi of transition i as an arc label to each
transition in the Markov chain given in Fig. 5. SPN in Fig. 2 displays sequential
operation (t5, t1), parallel operation (t2, t3), forking (t1), joining (t5), and conflict
(t4, t5). Assume mean firing rates λ1 = 2, λ2 = 1, λ3 = 1, λ4 = 3, λ5 = 2.

The reachability set has fire markings, or, to say it more simply, there are five
states in the Markov chain, beginning with the initial marking of one token in place
P1 and no tokens in the remaining locations. We may determine the steady state
probabilities by using the marking probabilities and the total number of tokens in
each place in a given marking. Using the infinitesimal generator A of the MC is
given by
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A =


2 2 0 0 0
0 2 1 1 0
0 3 4 0 1
0 0 0 1 1
2 0 0 0 2



Solving the Markov chain using πA = 0, the steady-state marking probabilities
are:

P (M1) = P [(1, 0, 0, 0, 0)] =
5

43
, P (M2) = P [(0, 1, 1, 0, 0)] =

8

43
,

P (M3) = P [(0, 0, 1, 1, 0)] =
2

43
, P (M4) = P [(0, 1, 0, 0, 1)] =

22

43
,

P (M5) = P [(0, 0, 0, 1, 1)] =
5

43
.

By equation (3.1), we obtain the following system of equations:

(π1, π2, π3, π4, π5)


−λ1 λ1 0 0 0
0 −λ2 − λ3 λ2 λ3 0
0 λ4 −λ3 − λ4 0 λ3

0 0 0 −λ3 λ3

λ5 0 0 0 −λ5

 = 0 (6.12)

π1 + π2 + π3 + π4 + π5 = 1

The above system’s solution provides the following parametric steady state
probabilities in terms of transition firing rates:

Π⊤ =


π1

π2

π3

π4

π5

 =


5λ2λ3λ4λ5

λ
8λ1λ3λ4λ5

λ
2λ1λ2λ4λ5

λ
8λ1λ2λ3λ5

λ
5λ1λ2λ3λ4

λ

 (6.13)

Where,

5λ2λ3λ4λ5 + 8λ1λ3λ4λ5 + 2λ1λ2λ4λ5 + 8λ1λ2λ3λ5 + 5λ1λ2λ3λ4 = 1
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After obtaining steady state probabilities in terms of transition firing rates, the
second step of our approach requires us to express the transition firing rates as
triangular fuzzy numbers. The fuzzy number values for each transition firing rate
are shown in Table 2.

Table 1. Places, Transitions and their firing rates used in the
model.

Places Interpretation Transition Firing rates

P1 Forking t1 λ1 = 2

P2 Constantly enabled t2 λ2 = 1

P3 Constantly enabled t3 λ3 = 1

P4 Conflict t4 λ4 = 3

P5 Joining t5 λ5 = 2

Table 2. Transition firing rates and their α-cut representation.

Fuzzy λ Value α-cut representation

λ1 = (|1|2|3) λ1 = (1 + α; 3− α)

λ2 = (|0.9|1|1.1) λ2 = (0.9 + 0.1α; 1.1− 0.1α)

λ3 = (|0.9|1|1.1) λ3 = (0.9 + 0.1α; 1.1− 0.1α)

λ4 = (|2|3|4) λ4 = (2 + α; 4− α)

λ5 = (|1|2|3) λ5 = (1 + α; 3− α)

By replacing the fuzzy values from Table 2 in the parametric steady-state prob-
ability representation equation (6.13) and applying fuzzy mathematics as given in
equations (6.2) to (6.7), the following α-cut representations of fuzzy steady-state
probabilities are obtained:
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π1(α) =

(
0.05α4 + 1.05α3 + 6.85α2 − 13.95α− 8.1

1.18α4 − 16.7α3 + 60.14α2 + 93.3α+ 40.68
,

−0.05α4 + 0.35α3 + 5.45α2 − 42.35α+ 72.6

0.68α4 − 24.34α3 + 183.76α2 − 570.82α− 628.32

)
π2(α) =

(
0.8α4 + 1.04α3 + 28.8α2 + 41.6α+ 14.4

1.18α4 − 16.7α3 + 60.14α2 + 93.3α+ 40.68
,

−0.8α4 − 16.8α3 + 114.4α2 − 319.2α+ 316.8

0.68α4 − 24.34α3 + 183.76α2 − 570.82α− 628.32

)
π3(α) =

(
0.2α4 + 2.6α3 + 8.2α2 + 9.4α+ 3.6

1.18α4 − 16.7α3 + 60.14α2 + 93.3α+ 40.68
,

−0.2α4 − 4.2α3 + 28.6α2 − 79.8α+ 79.2

0.68α4 − 24.34α3 + 183.76α2 − 570.82α− 628.32

)
π4(α) =

(
0.08α4 + 1.6α3 + 9.44α2 + 14.4α+ 6.48

1.18α4 − 16.7α3 + 60.14α2 + 93.3α+ 40.68
,

0.08α4 − 2.24α3 + 20.96α2 − 73.92α+ 87.12

0.68α4 − 24.34α3 + 183.76α2 − 570.82α− 628.32

)
π5(α) =

(
0.05α4 + 1.05α3 + 6.85α2 + 13.95α+ 8.1

1.18α4 − 16.7α3 + 60.14α2 + 93.3α+ 40.68
,

0.08α4 − 2.24α3 + 20.96α2 − 73.92α+ 87.12

0.05α4 − 1.45α3 + 14.35α2 − 55.55α+ 72.6

)

The graph of the fuzzy steady-state probabilities are given in Fig.6(a) - Fig.6(e).
Although for each α, the maximum and minimum values (α = 0 value) must be

in the interval [0,1], it can be seen that π+
2 and π+

4 do not satisfy this condition.
So, we must optimize it to find the minimum α-cut that satisfies the condition.
Since π1 = π5 and π−

1 α& ≥ 0the optimization problem can be reduced to the
following:

Minimize Z = α

Subject to

π
+(α)
1 ≤ 1

π
+(α)
2 ≤ 1

π
+(α)
3 ≤ 1

π
+(α)
3 ≤ 1

π
+(α)
1 , π

+(α)
2 , π

+(α)
3 , π

+(α)
4 ≥ 0
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(a) (b)

(c) (d)

(e)

Figure 6: The Graphical representation of fuzzy - steady state prob-
abilities (a)π1, (b)π2, (c)π3, (d)π4, (e)π5

The solution for the optimization problem (6.14) is 0.51 obtained by using
MATLAB. This ’α′ value is the one that makes the fuzzy steady-state proba-
bilities feasible. The largest interval of final fuzzy steady-state probabilities are
represented by a cut value of α = 0, while the crisp SPN probability is represented
by a cut value of α = 1 given in Table 3. As a concluding remark regarding uncer-
tainty represented by fuzzy numbers, it should be pointed out that in some cases,
fuzzy numbers are asymmetric as they tend to indicate where the time value could
be located.

Using the appropriate simplifications, the problem is as follows:

Minimize Z = α
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Subject to

0.73α4 + 24.69α3 − 178.31α2 + 468.47α− 555.72 ≤ 0

0.12α4 − 7.54α3 + 69.36α2 − 251.62α+ 311.52 ≤ 0

0.88α4 − 20.14α3 + 155.1α2 − 491.02α+ 549.12 ≤ 0

0.64α4 + 22.06α3 − 162.74α2 + 496.9α− 541.2 ≤ 0

(6.14)

Here the marking M1 at which P2 and P3 is marked with state probability π1,
π2 within α cut as (0.116/0.154/0.19), (0.354/0.447/0.504). The crisp case with
a single value does not enable us to have a unique result where the steady state
probability using SPN together with fuzzy set theory in system modelling are un-
avoidable.

7. Conclusion

In this paper, we presented a method for applying stochastic petri nets with
fuzzy parameters to model and analyse discrete-event (communication) systems.
Our two-stage process, which is based on fuzzy sets and PNs, aims to improve
the modelling and analysis capabilities of complex systems. In the description
above, it is unreasonably assumed that every message is transmitted error-free. In
reality, transmission faults are inevitable, especially when noise is present in any
communication channel. On the other hand, symmetric revealed that errors are
equally likely to occur regardless of the character being conveyed, the challenge
of determining an unknown Markov chain’s stationary probability from a series of
observations. Fuzzy numbers should be used to estimate transition probabilities
and carry out the calculations to get fuzzy stationary probability. It should be
noted that fuzzy numbers can occasionally be asymmetrical in their representation
of uncertainty because they have a tendency to suggest possible locations for the
genuine value. True crisp stationary probabilities can be more accurately approx-
imated with defuzzification. The suggested methodology, which was tested on a
communication system, can be used to the modelling and analysis of any complex,
dynamic, and time-sensitive system that SPNs are used to simulate. For future
research, analysis with respect to fuzzy parameter and application of the proposed
approach in other fields rather than communication systems are recommended.
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