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Abstract. Recently, the theory of stochastic equations has been actively

developing. Here it is worth noting the classical direction of research by
Ito – Stratonovich – Skorokhod.Its main problem is to overcome the difficul-

ties associated with the differentiation of a non-differentiable (in ”the usual

sense”) Wiener process. It is also necessary to note the approach of I.V. Mel-
nikova, within the framework of which stochastic equations are considered in

Schwarz spaces using the generalized derivative. Our research will use meth-

ods and results of the theory, which is based on the concept of the Nelson –
Glicklich derivative. Most studies consider the Cauchy problem for stochas-

tic equations. In this article, instead of the Cauchy condition, it is proposed
to consider a multipoint initial-final value condition. The obtained abstract

results are used to analyze the solvability of the stochastic Oskolkov system,

which models the dynamics of the velocity and pressure of a viscoelastic in-
compressible fluid. It is considered with a no-slip boundary condition and a

multipoint initial-final value condition. The main result of the article is the

proof of the solvability of the posed problem.

Introduction

Let Ω ⊂ Rn, n ∈ N \ {1}, be a bounded domain with boundary ∂Ω of the class
C∞. In the cylinder Ω× R consider the system of equations

(1− æ∇2)vt = ν∇2v − (v · ∇)v −∇p+ f, ∇ · v = 0, (0.1)

modeling the dynamics of velocity v = (v1, v2, . . . , vn), vk = vk(x, t), k = 1, n,
and pressure p = p(x, t), (x, t) ∈ Ω × R, viscoelastic incompressible fluid. Here
the parameter ν ∈ R+ characterizes the viscous properties of the liquid, and the
parameter æ ∈ R characterizes the elastic properties of the fluid. The prototype
of such a liquid is high-paraffin type of oil, produced, in particular, in the fields
of Western Siberia. The system (0.1) was first obtained and studied by A.P. Os-
kolkov [1]. Therefore, it later received the name ”Oskolkov system” [2]. In [3]
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G.A. Sviridyuk began studying a modified system of equations (0.1)

(λ−∇2)ut = ν∇2u− α(u · ∇)u−∇p, ∇ · u = 0. (0.2)

To solve the system of equations (0.2) consider ”the condition no-slip” to the
boundary of the domain

u(x, t) = 0, (x, t) ∈ ∂Ω× R. (0.3)

As is known, Newton rheological relation, which models the dynamics of viscous
incompressible fluids, has the form [4], [5], [6]

σ = 2νD − pI. (0.4)

Here σ and D are the stress and strain rate tensors, respectively, ν ∈ R+ is
the viscosity coefficient, I is the unit matrix, p characterizes the pressure. After
substituting (0.4) into the equations of motion of a continuous incompressible
medium in the Cauchy form

vt = ∇ · σ, ∇ · v = 0, (0.5)

we obtain the famous Navier – Stokes system of equations

vt = ν∇2v − (v · ∇)v −∇p, ∇ · v = 0, (0.6)

modeling the evolution of velocity and pressure of a viscous incompressible fluid.
Extensive literature is devoted to the study of equations (0.6) in various aspects.
Let us note here the fundamental monographs of O.A. Ladyzhenskaya [7] and
R. Temam [8].

Various effects (for example, the recoil effect or the fading memory effect) that
arise when pumping oil through pipelines and do not fit into the framework of the
model (0.6) have prompted many researchers to revise the relationship (0.4). In
particular, the rheological relation by V.A. Pavlovskii [9]

σ = 2νD +æDt − pI, (0.7)

was offered and experimentally tested [10]. Here the coefficient æ has the physical
meaning of relaxation viscosity, and by design it is strictly positive. It immedi-
ately follows from (0.7) that the fluid velocity in the absence of stress does not
immediately become equal to zero, as in Newton’s model (0.4), but tends to zero
exponentially, which gives the required relaxation effect.

However, later, in experiments with aqueous solutions of polymers, it turned
out that the constant æ can also take negative values [11]. Moreover, for negative
values of æ, the model (0.7) demonstrates strong instability. Analysis of the rela-
tionship (0.7), carried out in [12] from the standpoint of the rheological theory [4],
[5], [6], showed that in the case of æ ∈ R+ this model reveals properties charac-
teristic of solids. Consequently, it cannot represent any non-Newtonian fluid [4],
and therefore in [12] it is proposed to call such objects media.

If the rheological relation (0.7) is substituted into the equation (0.5), we obtain
a system of equations (0.1), which, after simple algebraic transformations, will
turn into the system (0.2). Here α = λ = æ−1 are parameters characterizing
elastic properties of liquid. In what follows, the system (0.2) will be considered for
different values of the parameters α and λ. Initially, various initial-boundary value
problems for the equations (0.1) were studied by A.P. Oskolkov [1], [2], [13], [14],
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[15], then his students [16], [17] joined the research. The results of their research
consisted mainly in proving the unique solvability of various initial-boundary value
problems for the system (0.1) and its various generalizations for positive values of
the parameter æ in bounded and unbounded regions of space Rn, n ∈ {2, 3, 4}.

Relevant equations [15] in specially constructed spaces [18] can be reduced to
an abstract model

Lu̇ =Mu+N(u),

where L, M are linear, and N are nonlinear operators. Let’s consider the linear
abstract model

Lu̇ =Mu+ f,

in Banach spaces U and F, and the operators L ∈ L(U;F) (i.e. linear and contin-
uous), M ∈ Cl(U;F) (i.e. linear, closed and densely defined). Let the operator M
be (L, p)-bounded [19], and its L-spectrum satisfy the condition [20]

σL(M) =

m∪
j=0

σL
j (M), m ∈ N, and σL

j (M) ̸= ∅, there exists

a closed contour γj ⊂ C bounding the domain Dj ⊃ σL
j (M)

such that Dj ∩ σL
0 (M) = ∅, Dk ∩Dl = ∅ ∀j, k, l = 1,m, k ̸= l.

(0.8)

Then there are relative spectral projectors

Pj =
1

2πi

∫
γj

RL
µ (M)dµ ∈ L(U); Qj =

1

2πi

∫
γj

LL
µ(M)dµ ∈ L(F), j = 0,m,

where the boundary contours γr are defined by (0.8). We will discuss these pro-
jectors in more detail in the third paragraph.

The work is devoted to the study of the stochastic linear Sobolev type equation

L
◦
η=Mη +Nω, (0.9)

where η = η(t) is the required one, and ω = ω(t) is a given stochastic K-process
(K-”noise”), with multipoint initial-final value condition

lim
t→0+

P0(η (t)− ξ0) = 0, Pj(η(τj)− ξj) = 0, j = 1,m. (0.10)

A detailed description will be given in the second paragraph.
The article, in addition to the introduction and bibliography, contains three

parts. In the first part, spaces of differentiable random processes with values
in a separable Hilbert space are constructed. Moreover, by derivative we mean
the Nelson – Gliklich derivative [21], [22], [23], [24]. We call random processes
that have Nelson – Glicklich derivatives differentiable ”noises” [25], [26], [27], [28].
The second part of the article presents results on the solvability of the stochastic
problem (0.9), (0.10) under the condition that the operator M , p ∈ {0} ∪ N, is
(L, p)-bounded, and a condition guaranteeing the existence of relative spectral
projectors Pj , j = 0, n, [29]. These results generalize and develop the abstract
results of the works [25], [26], [27], [28]. The third part contains applications of the
obtained abstract results for the stochastic Oskolkov system. The list of references
does not pretend to be complete and reflects only the tastes and preferences of the
authors.
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1. Spaces of differentiable ”noises”

Let Ω ≡ (Ω,A,P) is a complete probability space with a probability mea-
sure P associated with the σ-algebra A of subsets of the set Ω, and R is a
set of real numbers, endowed with a Borel σ-algebra. A measurable mapping
ξ : Ω → R is called random variable. A set of random variables whose math-
ematical expectation is zero, and the variance is finite, forms the Hilbert space
L2 = {ξ : Eξ = 0, Dξ < +∞} with the scalar product (ξ1, ξ2) = Eξ1ξ2 and
the norm ∥ξ∥2L2

= Dξ. Note that in L2 the orthogonality of the vectors ξ and
η (i.e. (ξ, η) = 0) is equivalent to correlated random variables ξ and η. Indeed,
0 = cov(ξ, η) = Eξη = (ξ, η) = 0.

Let us take the set I ⊂ R and consider two mappings: f : I → L2, which
each t ∈ I assigns a random variable ξ ∈ L2, and g : L2 × Ω → R, which assigns
to each pair (ξ, ω) point ξ(ω) ∈ R. Display η : I × Ω → R, which has the form
η = η(t, ω) = g(f(t), ω), we call (one-dimensional) stochastic process. For every
fixed t ∈ I value of the stochastic process η = η(t, ·) is a random variable, i.e.
η(t, ·) ∈ L2, which we call cross section of the stochastic process at point t ∈ I.
For each fixed ω ∈ Ω the function η = η(·, ω) is called (selective) trajectory of a
random process corresponding to the elementary outcome ω ∈ Ω. Trajectories are
also called realizations or sample functions of a random process. Usually, when
this does not lead to ambiguity, the dependence of η(t, ω) on ω is not indicated
and the random process is simply denoted by η(t).

Considering I ⊂ R to be an interval, we call the stochastic process η = η(t),
t ∈ I, continuous, if a.s. (almost surely) all its trajectories are continuous (i.e. for
almost all ω ∈ A trajectories η(·, ω) are continuous functions). A set of continuous
stochastic processes forms Banach space, which we denote by the symbol C(I;L2)

with the norm ∥η∥CL2 = sup
t∈I

(Dη(t, ω))1/2. Let A0 be a σ-subalgebra σ-algebras

A. Let us construct the subspace L0
2 ⊂ L2 random variables measurable with

respect to A0. Let us denote by Π : L2 → L0
2 – ortho projector. Let ξ ∈ L2, then

Πξ is called conditional mathematical expectation of the random variable ξ and
is denoted by the symbol E(ξ|A0). Let us fix η ∈ C(I;L2) and t ∈ I, by N η

t we
denote the σ-algebra generated by random variable η(t), and denote Eη

t = E(·|N η
t ).

Example 1.1. Wiener process describing Brownian motion in the Einstein –
Smoluchowski model (see [22])

β(t, ω) =

∞∑
k=0

ξk(ω) sin
π

2
(2k + 1)t, t ∈ {0} ∪ R+,

is a continuous stochastic process. Here the coefficients {ξk = ξk(ω)} ⊂ L2 are

pairwise uncorrelated Gaussian random variables such that Dξ2k =
[π
2
(2k + 1)

]−2

,

k ∈ {0} ∪ N.

Definition 1.2. [21], [22] Let η ∈ C(I;L2). By the Nelson – Glicklich derivative
◦
η stochastic process η at point t ∈ I a random variable

◦
η (t, ·) = 1

2
lim

∆t→0+
Eη

t

(
η(t+∆t, ·)− η(t, ·)

∆t

)
+
1

2
lim

∆t→0+
Eη

t

(
η(t, ·)− η(t−∆t, ·)

∆t

)
,
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is called, if the limit exists in the sense of a uniform metric on R.

If the Nelson – Glicklich derivatives
◦
η (t, ·) of the stochastic process η(t, ·) exist

in all (or almost all) points of the interval I, then we talk about the existence of

the Nelson – Glicklich derivative
◦
η (t, ·) on I (a.s. on I.)

Set of continuous stochastic processes having continuous Nelson – Glicklich

derivatives
◦
η forms a Banach C1(I;L2) space with the norm

∥η∥C1L2
= sup

t∈I

(
Dη(t, ω) +D

◦
η (t, ω)

)1/2
.

We further define by induction the Banach spaces Cl(I;L2), l ∈ N, stochastic
processes whose trajectories a.s. differentiable with respect to Nelson – Gliklich
on I up to order l ∈ {0} ∪ N inclusive [30]. The norms in them are given by the

formulas ∥η∥ClL2
= sup

t∈I

(
l∑

k=0

D
◦
η (k)(t, ω)

)1/2

. Here we will consider the zero-

order Nelson – Gliklich derivative to be the original random process, i.e.
◦
η (0) ≡ η,

and under the Nelson – Gliklich derivative are of order k we will understand the
Nelson – Gliklich derivative of the first order from the Nelson – Gliklich derivative
of order k − 1. For brevity we will call spaces of differentiable ”noises” (see [25],
[26], [27], [28]).

Example 1.3. In [22, 30] it is shown that β ∈ Cl(R+;L2), l ∈ {0} ∪ N, and
◦
β (t) =

β(t)

2t
, t ∈ R+.

Thus, spaces of random variables L2 and spaces of differentiable ”noises”
Cl (I;L2), l ∈ {0} ∪ N. Let’s move on to constructing a space of random K-
variables. Take H is a separable Hilbert space with an orthonormal basis {ϕk},
a monotone sequence K = {λk} ⊂ R+ such that that

∞∑
k=1

λ2k < +∞, as well as a

sequence {ξk} = ξk(ω) ⊂ L2 of random variables such that that ∥ξk∥L2
≤ C, for

all C ∈ R+, for all k ∈ N.

Let us construct a H-valued random K-variable ξ(ω) =

∞∑
k=1

λkξk(ω)ϕk. Com-

pletion of the linear hull of the set {λkξkϕk} by the norm

∥η∥2HKL2
=

( ∞∑
k=1

λ2kDξk

)1/2

is called the space of (H-valued) random K-variables and is denoted by the symbol
HKL2. How easy it is to see the space HKL2 is Hilbertian, and the random K-
variable constructed above ξ = ξ(ω) ∈ HKL2. Likewise, Banach space (H-valued)
K- ”noises” Cl (I;HKL2), l ∈ {0} ∪N, we define as the completion of the linear

170



T. G. SUKACHEVA* AND S.A. ZAGREBINA**

hull of the set {λkηkϕk} by the norm

∥η∥2ClHKL2
= sup

t∈I

( ∞∑
k=1

λ2k

l∑
m=1

D
◦
ηm
k

)1/2

,

where the sequence of ”noises” {ηk} ⊂ Cl (I;L2), l ∈ {0} ∪ N. As is easy to see,

the vector η(t, ω) =

∞∑
k=1

λkηk(t, ω)ϕk lies in the space Cl(I;HKL2), if a sequence

of vectors {ηk} ⊂ Cl(I;L2) and all their Nelson – Glicklich derivatives up to order
l ∈ {0} ∪ N inclusive are uniformly bounded by the norm ∥ · ∥ClL2

.

Example 1.4. Vector lying in all spaces Cl(R+;HKL2), l ∈ {0} ∪ N,

WK(t, ω) =

∞∑
k=1

λkβk(t, ω)ϕk,

where {βk} ⊂ Cl(I;L2) is sequence of Brownian motions, called (H-valued) Wiener
K-process.

2. The multipoint initial-final value condition

Now let U (F) be a real separable Hilbert space with an orthonormal basis {ϕk}
({ψk}). Let us introduce into consideration a monotone sequence K = {λk} ⊂
{0} ∪ R such that

∞∑
k=1

λ2k < +∞. The symbol UKL2 (FKL2) denotes the Hilbert

space, which is the completion of the linear hull of random K-variables

ξ =

∞∑
k=1

λkξkϕk, ξk ∈ L2,

(
ζ =

∞∑
k=1

µkζkψk, ζk ∈ L2

)
,

according to the norm ∥η∥2U =
∞∑
k=1

λ2kDξk

(
∥ω |2F =

∞∑
k=1

µ2
kDζk

)
. Note that in

different spaces (UKL2 and FKL2) the sequence K can be different (K = {λk}
in UKL2 and K = {µk} in FKL2), however, all sequences marked with K must
be monotonic and summable with square. All results, generally speaking, will be
true for different sequences {λk} and {µk}, but for the sake of simplicity we will
limit ourselves to the case λk = µk.

Lemma 2.1. Operator A ∈ L(U;F) exactly when A ∈ L(UKL2;FKL2).

How easy it is to see

∥Aξ∥F ≤
∞∑
k=1

λ2kDξk∥Aϕk∥2F ≤ const

∞∑
k=1

λ2kDξk = const∥ξ∥U.

Lemma 2.2. Operator M ∈ L(U;F) is σ-bounded with respect to operator L ∈
L(U;F) exactly when M ∈ L(UKL2;FKL2) is σ-bounded with respect to the oper-
ator L ∈ L(UKL2;FKL2). Moreover, the L-spectrum of the operator M coincide
in both cases.
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The proof of Lemma 2.2 is similar to the proof of Lemma 2.1 and is therefore
omitted. Ideas and methods of theory regarding σ-bounded operators can be
found, for example, in [19]. According to this theory, in the case of a (L, σ)-
bounded operator M there is a pair of relative spectral projectors

P =
1

2πi

∫
γ

RL
µ (M)dµ ∈ L(U), Q =

1

2πi

∫
γ

LL
µ(M)dµ ∈ L(F), (2.1)

where γ ⊂ C is the contour bounding the region containing the L-spectrum σL(M)
of the operator M , and RL

µ (M) = (µL−M)−1L (LL
µ(M) = L(µL−M)−1 – right

(left) L-resolvent operator M . By Lemma 2.1, we transfer the projectors P and
Q to the spaces UKL2 and FKL2 respectively and introduce into consideration
the subspaces U0

KL2 = kerP , F0
KL2 = kerQ and U1

KL2 = imP , F1
KL2 = imQ.

We denote by Lk (Mk) the restriction of the operator L (M) to Uk
KL2 (Fk

KL2),
k = 0, 1. Fair

Theorem 2.3. (splitting theorem). [28] Let L, M ∈ L(UKL2;FKL2), operator
M (L, σ)-bounded. Then

(i) operators L0, M0 ∈ L(U0
KL2;F

0
KL2); L1, M1 ∈ L(U1

KL2;F
1
KL2);

(ii) operators M−1
0 ∈ L(F0

KL2;U
0
KL2), L

−1
1 ∈ L(F1

KL2;U
1
KL2).

Let us construct the operator H = L−1
0 M0 ∈ L(U0) (G = M0L

−1
0 ∈ L(F0)).

We call a (L, σ)-bounded operator M (L, p)-bounded if there exists a number
p ∈ {0}∪N such, that Hp ̸= O, and Hp+1 = O. Note that the number p ∈ {0}∪N
does not change if the operator H is replaced by the operator G. Now let us take
the (L, p)-bounded operator M , p ∈ {0} ∪ N, and construct families of operators

U t =
1

2πi

∫
γ

RL
µ (M)eµtdµ, F t =

1

2πi

∫
γ

LL
µ(M)eµtdµ, (2.2)

where the contour γ ⊂ C is the same as in (2.1). On R the families (2.2) are
commutative groups whose units are the projectors (2.1). Moreover, the families
(2.2) extend to the entire complex plane while preserving the group property.

Let τ0 = 0, τj ∈ R+, (τj−1 < τj), j = 1,m. Let condition (0.8) be satisfied.

Theorem 2.4. [31] Let the operator M be (L, p)-bounded, p ∈ {0} ∪ N, and the
condition (0.8) holds. Then there exist families of operators

U t
j =

1

2πi

∫
γj

RL
µ (M)eµtdµ, F t

j =
1

2πi

∫
γj

LL
µ(M)eµtdµ, j = 1,m,

U t
0 = U t −

m∑
k=1

U t
k, F

t
0 = F t −

m∑
k=1

F t
k, t ∈ R.

Moreover
(i) U tUs

j = Us
j U

t = Us+t
j , F tF s

j = F s
j F

t = F s+t
j for all s, t ∈ R, j = 0,m;

(ii) U t
kU

s
l = Us

l U
t
k = O, F t

kF
s
l = F s

l F
t
k = O for all s, t ∈ R, k, l = 0,m, k ̸= l.

Remark 2.5. Consider the units Pj = U0
j , Qj = F 0

j , j = 0,m. It can be shown,
based on the results of Theorem 2.4, that
(i) PPj = PjP = Pj , QQj = QjQ = Qj , j = 0,m;
(ii) PkPl = PlPk = O, QkQl = QlQk = O k, l = 0,m, k ̸= l.
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By Lemma 2.1, we transfer the projectors Pj , Qj , j = 0,m, to the spaces UKL2

and FKL2 respectively and introduce subspaces into consideration

U1j
KL2 = imPj , F

1j
KL2 = imQj , j = 0,m. By construction U1

KL2 =

m⊕
j=0

U1j
KL2,

F1
KL2 =

m⊕
j=0

F1j
KL2. We denote by L1j (M1j) the restriction of the operator L

(M) to U1j
KL2 (F1j

KL2), j = 0,m.

Theorem 2.6. (Generalized splitting theorem). [28] Let L,M ∈ L(UKL2;FKL2),
operator M is (L, p)-bounded, p ∈ {0} ∪ N,
(i) operators L1j ∈ L(U1j

KL2;F
1j
KL2), M1j ∈ L(U1j

KL2;F
1j
KL2), j = 0,m;

(ii) there are operators L−1
1j ∈ L(F1j

KL2;U
1j
KL2), j = 0,m.

Let the operators L, M , N ∈ L(UKL2;FKL2), Let us consider a linear sto-
chastic equation of Sobolev type (0.9). Let us supply the equation (0.9) multipoint
initial-final value condition (0.10)

Let us call the stochastic K-process η ∈ C1(R+;L2) (classical) solution of the
equation (0.9), if a.s. all of it trajectories satisfy the equation (0.9) with some K-
”noise” ω ∈ C(R+;L2) and all t ∈ R+. The solution η = η(t) of the equation
(0.9) will be called a solution of the problem (0.9), (0.10) if the condition (0.10)
for some random K-variables ξk ∈ UKL2, k = 0, l.

Theorem 2.7. [28] Let the operator M is (L, p)-bounded, p ∈ {0} ∪ N, and con-
dition (0.8) is satisfied. Then for any τj ∈ R+, j = 1,m, operator N ∈ L(U;F),

monotonic sequence K ⊂ {λk} such that

∞∑
k=1

λ2k < +∞, K- ”noise” ω = ω(t) such

that (I − Q)Nw ∈ Cp+1(R+;UKL2) and QNw ∈ C(R+;UKL2), and random
K-variables ξj ∈ UKL2, j = 0,m, independent of ω, there is a unique solution
η ∈ C1(R+;UKL2), problem (0.9), (0.10), having the form

η(t) = −
p∑

q=0

HqM−1
0 (I−Q)

◦
ω (q)(t)+

+

m∑
j=0

[
U

t−τj
j ξj +

∫ t

τj

U
s−τj
j L−1

1j QjNω(s)ds

]
, t ∈ I.

Corollary 2.8. Let all the conditions of Theorem 2.7 be satisfied and

ω(t) =
◦
WK (t). Then for any random K-variables ξj ∈ UKL2, j = 0,m, there

is a unique solution to the problem (0.9), (0.10), having the form

η(t) = −
p∑

q=0

HqM−1
0 (I−Q)

◦
W

(q+1)
K (t)+

+

m∑
j=0

[
U

t−τj
j ξj + L−1

1j QjNWK(t)− SjPj

∫ t

τj

U
s−τj
j L−1

1j QjNWK(s)ds

]
, t ∈ R+.
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3. Linear stochastic Oskolkov system

Let Ω ⊂ Rn, n ∈ N \ {1}, be a bounded domain with boundary ∂Ω of the class
C∞. In the cylinder Ω× R consider the linear Oskolkov system of equations

(1− æ∇2)vt = ν∇2v −∇p+ f, ∇ · v = 0. (3.1)

Based on the results of points 2 and 3, we will reduce the system (3.1) and
the condition (0.3) to the equation (0.9). Following [18], [32], [33], we denote by

H2 = (W 2
2 )

n,
◦
H1 = (

◦
W1

2)
n, L2 = (L2)

n space vector-functions v = (v1, v2, . . . , vn)
defined on Ω. Consider the lineal L = {v ∈ (C∞

n )n : ∇·v = 0} of vector-functions,
solenoidal and finite in the domain Ω. We denote the closure of L with respect
to the norm of the space L2 by Hσ. The space Hσ is Hilbert with the scalar
product ⟨·, ·⟩ inherited from L2; in addition, there is a splitting L2 = Hσ ⊕ Hπ,
where Hπ is the orthogonal complement of Hσ. We denote by Σ : L2 → Hσ the

corresponding orthoprojector. The restriction of the projector Σ to H2∩
◦
H1 is a

continuous operator, Σ : H2∩
◦
H1 → H2∩

◦
H1. Let us therefore represent the space

H2∩
◦
H1 as a direct sum H2∩

◦
H1 = H2

σ ⊕ H2
π, where H2

σ = im Σ, H2
π = kerΣ.

There are continuous and dense embeddings H2
σ ↪→ Hσ and H2

π ↪→ Hπ. The space
H2

π consists of vector functions that are equal to zero on ∂Ω and are gradients of
functions from W 3

2 (Ω).

Lemma 3.1. [19]

(i) By the formula A = (−∇2)n : H2∩
◦
H1 → L2 defines a linear continuous

operator with a positive discrete finite multiple spectrum σ(A) condensing only to
the point +∞, and the mapping A : H2

σ(π) → Hσ(π) is bijective.

(ii) Formula B : v → −∇(∇· v) a linear continuous surjective operator is given

B : H2∩
◦
H1 → Hπ, and kerB = H2

σ.

Let U = H2
σ × H2

π × Hp, F = Hσ × Hπ × Hp are real separable Hilbert spaces
with an orthonormal basis {ϕk} and {ψk}, respectively. Moreover Hp = Hπ,
Aλ = λI+A. Let’s construct operators

L =

 ΣAλ O O
O ΠAλ O
O O O

 , M =

 −ν
∑
A O O

O −νΠA − Pi
O ΠB O

 .

Obviously, L,M ∈ L(U;F), and im L = Hσ ×Hπ × {0}, kerL = {0} × {0} ×Hp.
Let us introduce into consideration a monotone sequence K = {λk} ⊂ {0} ∪ R

such that
∞∑
k=1

λ2k < +∞. Let us consider Hilbert spaces, which is the completion

of the linear hull of random K-variables

UKL2 =

{
ξ =

∞∑
k=1

λkξkϕk, ξk ∈ L2, ϕk ∈ H2
σ ×H2

π ×Hp

}
,

FKL2 =

{
ζ =

∞∑
k=1

µkζkψk, ζk ∈ L2, ψk ∈ Hσ ×Hπ ×Hp

}
.
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Lemma 3.2. [19]For any λ ∈ R\σ(A), ν ∈ R+ the operator M is (L, 1)-bounded.

If we set Nω = col(Σf,Πf, 0), and f(t) =
◦
WK (t), then the reduction of the

problem (0.3), (3.1) to the equation (0.9) finished.
Let the operators L, M , N ∈ L(UKL2;FKL2). Consider a linear stochastic

Sobolev type equation (0.9) with multipoint initial-final value condition (0.10).
Let us call the stochastic K-process η ∈ C1(R+;L2) (classical) solution of the

equation (0.9), if a.s. all of it trajectories satisfy the equation (0.9) for some K-
”noise” ω ∈ C(R+;L2) and all t ∈ R+. Solution η = η(t) to the equation (0.9)
let’s call solution to the problem (0.9), (0.10), if the condition (0.10) is met for
some random K-variables ξk ∈ UKL2, k = 0, l .

Let us find the L-spectrum σL(M) of the operator M . As is easy to see, the
operator µL−M is invertible exactly when the operator

Σ(µλI− (µ− ν)A) : H2
σ → Hσ

is invertible. Let Ã denote the restriction of the operator A to H2
σ. The spectrum

of the operator Ã ∈ L(H2
σ;Hσ) is positive, discrete, finitely multiple and condenses

only to +∞ (Solonnikov – Vorovich – Yudovich theorem [31]). Let {λk} denote

the set of eigenvalues of the operator Ã, numbered in non-decreasing order taking
into account multiplicity. Then

σL(M) =

{
µk =

νλk
λk − λ

: λk ∈ σ(Ã) \ {λ}
}
.

It is clear that for such a set one can select contours γj ⊂ C. Let’s construct

U t
j =


∑

λk∈σL
j (M)

eλkt⟨·, ϕk⟩σϕk O O

O O O
O O O

 , j = 0,m.

It follows from Lemma 3.2 that under the conditions of this lemma the condition
(0.8) is satisfied.

Theorem 3.3. Let the operators L and M be defined as in Lemma 3.2. Then for
any τj ∈ R+, j = 1,m, operator N ∈ L(U;F), monotonic sequence K ⊂ {λk} such

that

∞∑
k=1

λ2k < +∞, K- ”noise” ω = ω(t) such that (I−Q)Nw ∈ Cp+1(R+;UKL2)

and QNw ∈ C(R+;UKL2), ω(t) =
◦
WK (t) and random K-variables ξj ∈ UKL2,

j = 0,m, independent of ω, there is a unique solution η ∈ C1(R+;UKL2), problem
(0.9), (0.10), having the form

η(t) =

m∑
j=0

[
U

t−τj
j ξj + L−1

1j QjNWK(t)− SjPj

∫ t

τj

U
s−τj
j L−1

1j QjNWK(s)ds

]
−

−
p∑

q=0

HqM−1
0 (I−Q)

◦
W

(q+1)
K (t), t ∈ R+.
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