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Abstract. Investigated is a model of dynamics of pressure and velocity of
a viscoelastic incompressible fluid moving with the random external effect;
it is based on stochastic Oskolkov equations with the Showalter – Sidorov

initial condition. The article describes an algorithm for a numerical solution
of the Showalter – Sidorov problem for stochastic Oskolkov equations; the
algorithm is based on the Galerkin method. Provided is a numerical inves-

tigation algorithm providing for numerical solutions for both degenerate and
non-degenerate equations. The main theoretical results that enabled this nu-
merical investigation are the methods of the theory of degenerate groups of
operators and of the theory of the Sobolev type equations. The algorithms

are represented by schemes enabling building flowcharts of programs for com-

putational experiments. Results of computational experiments. In addition,
numerical investigation of the stochastic model involves further obtaining and

processing the results of n experiments at various values of a random variable,

including those related to rare events.

1. Introduction

Modern analytical and numerical investigations of a number of non-classical
mathematical models are closely related to the expansion of the applicability of
current methods for assessing the states and parameters of complex systems when
it comes to solving problems pertaining to fluid motion, improvement of efficiency
of oil production, optimization of automobile traffic and many other problems.
Scientists and researchers have been using for several decades Sobolev type sto-
chastic equations to describe and model a large number of physical, technical and
technological processes

Ldζ = Mζdt+NdW. (1.1)

It should be noted that Sobolev-type stochastic equations in relation to dy-
namical systems are based on differential equations that take into account a large
number of perturbations acting on an object. One example of such a process is the
motion of a particle in a liquid under the action of chaotic collisions of molecules.
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Such a motion was discovered by R. Brown in the 19th century, and is called the
Brownian motion [1]. The apparatus describing the process of changing random
variables in development is the theory of random functions (random processes).
The theory of random processes is widely used in the analytical and numerical
investigation of various dynamic mathematical models. This is due to the fact
that the operation of the studied systems is affected by external and internal in-
terference, external influences or, in other words, so-called ”noises”.

Traditionally, the first use of stochastic differential equations in the literature is
associated with the work on the description of Brownian motion, made indepen-
dently by M. von Smolukhovsky in 1904 and A. Einstein in 1905.

M. Smolukhovsky, using the kinetic law of energy distribution, created the
theory of Brownian motion, which proved the validity of the kinetic theory of heat
and contributed to its final approval [10]. A. Einstein, inspired by the work of
M. Smolukhovsky, published an essential work on the theory of Brownian motion
[3].

However, stochastic differential equations were used a little earlier in 1900 by the
French mathematician L. Bachelier in his doctoral dissertation ”Theory of specu-
lation” [2]. Using on the ideas of the above work, the French physicist P. Langevin
began to apply stochastic differential equations in works on physics. Later, he and
the Russian physicist R. Stratonovich developed a more rigorous mathematical
justification for stochastic differential equations.

The Sobolev type stochastic equations in the sense of the Nelson – Gliklich de-
rivative were first investigated in [4]–[7], [12]. The historiography of Sobolev type
stochastic equations, as well as the two main approaches to the investigation of
equations of this type, have been described in more detail in [11]. Therefore, new
results for the theory of Sobolev type stochastic equations enabling the investiga-
tion of various mathematical models with the development of numerical methods
and algorithms are relevant.

Let us turn to linear mathematical Oskolkov model [9]. Of note, in the frame-
work of this investigation, the Oskolkov equations

λzjt − zjxxt = αzjxx + fj (1.2)

are considered on a finite connected oriented graph.
Suppose that G = G(V;E) is a geometric graph, V = {Vi} denotes a set of

vertices and E = {Ej} denotes a set of edges. On the edges Ej of the graph G let
us consider the linear stochastic Oskolkov equations

λdζj − dζjxx = βjζjxxdt+NdWj , (1.3)

with Showalter – Sidorov initial condition

P (ζ(0)− ξ0) = 0, (1.4)

where W = (W1,W2, ...,Wn) is an F-digit nuclear K-Wiener process, operator
K ∈ L(Z) is nuclear, P0 is a relatively spectral projector. At the vertices Vi of the
graph G let us set continuity conditions

ζj(0, t) = ζk(0, t) = ζm(lm, t) = ζn(ln, t),
Ej , Ek ∈ Eα(Vi), Em, En ∈ Eω(Vi)

(1.5)
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and flow balance conditions∑
Ej∈Eα(Vi)

djζjx(0, t)−
∑

Ek∈Eω(Vi)

dkζkx(lk, t) = 0, (1.6)

where Eα(Vi) (E
ω(Vi)) is the set of edges having, at the vertices Vi which is the

beginning (end), lj > 0 and dj > 0 which are the length of the edge and the
diameter of its cross section. Equations (1.3) simulate the dynamics of pressure
and velocity of a viscoelastic incompressible fluid moving in the jth section of the
pipeline. An example of such a liquid may be high-paraffin grades of oil which are
produced in the fields of Western Siberia. The β ∈ R\{0} parameter characterizes
the elasticity of the liquid, the λ ∈ R parameter describes the viscosity of the liquid,
the random ζj = ζj(x, t), (x, t) ∈ (0, lj) × R process characterizes the change in
velocity and pressure of a viscoelastic incompressible liquid in the jth section of
the pipeline.

On the other hand, the resulting one-dimensional analogue (1.3) of the system
(1.2) can be interpreted as a change in the speed of the traffic flow, identifying in
this case the flow of vehicles with the hydrodynamic flow [14].

The Oskolkov equations on a graph were first investigated by G.A. Sviridyuk,
A.S. Shipilov [13], S.A. Zagrebina, E.A. Soldatova [15]. In addition, the mono-
graph by T.G. Sukacheva and O.P. Matveeva considers mathematical models of
viscoelastic incompressible liquids [8].

Of note, the linear stochastic Oskolkov model of change in the dynamics of
velocity and pressure of an incompressible viscoelastic fluid with the Showalter
– Sidorov initial condition in the sense of the classical direction was analytically
examined in [15]. The solvability of the Showalter – Sidorov problem (1.4) for an
abstract Sobolev type linear stochastic equation (1.3) has been proved.

Theorem 1.1. [15] Suppose the process W is the F1-digit K-Wiener process, the
operator N ∈ L(F1) and for each fixed t random variables ξ0 ∈ L2(Ω,Z

1) and the
W process are independent. Then for any ξ0 ∈ L2(Ω,Z

1) the problem (1.3), (1.4)
has a unique solution defined by expression

ζ(t) = Ztξ0 +
∫ t

0
Zt−sL−1

1 NW (s)ds, (1.7)

where Zt
0

Zt =
1

2πi

∫
γ

(µL−M)−1Leµtdµ.

2. The Algorithm of the Numerical Method

We will look for an approximate solution of the problem (1.3)–(1.6) in the form
of

ζ̃(x, t) =
(
ζ̃1(x, t), ζ̃2(x, t), ..., ζ̃n(x, t)

)
, (2.1)

where ζ̃j(x, t) is the approximate solution on the jth beam of the graph of the
form

ζ̃j(x, t) = ζNj (x, t) =

N∑
k=1

ak(t)φ
j
k(x). (2.2)
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Here, {φk} = {φ1
k, φ

2
k, ..., φ

N
k } refer to the corresponding orthonormal eigenfunc-

tions relative to the scalar product of L2 (G).
Next, we apply the representation (2.2) to the Oskolkov equation (1.3), re-

sulting in a system of equations by scalarly multiplying by eigenfunctions. Each
system’s equation will contain only one unknown Galerkin coefficient; therefore,
the expression (2.2) is a partial sum of the series, whose convergence provides for
the convergence of the approximate solution to the exact one.

Of note, the linearized Oskolkov model is considered on the graph. Let us build
a description of the algorithm of the numerical solution.

Step 1. Given: N is the number of summands of the Galerkin sum; lj dj are
the length and cross-sectional area of the edges of the graph, respectively (equal
for all edges), ω is the parameter of external action, a random variable A.
λj , βj are the coefficients of the linear Oskilkov equation. The coefficients are
taken equal for all edges of the graph.

Step 2. Showalter – Sidorov initial conditions are set. ξ0(x) is a function of the
Showalter – Sidorov initial condition, whose coefficients are normally distributed
random variables.

Step 3. Generation of approximate solutions

ζ̃j(t, x) =

N∑
k=1

ak(t)φ
j
k(x), (2.3)

and application of (2.1) to the equation.
Step 4. Using the differential equation from the previous step relative to the

unknown variables ak(t), we will multiply it scalarly by functions φj
k(x), k =

1, ..., N, to obtain a system of differential equations.
Step 5. Random variables ξ0k are generated.
Step 6. For numbers k0, for which the λ parameter coincides with the eigenvalue

νk0
of the ∆ operator, a system of corresponding algebraic equations is made and

solved.
Step 7. For numbers k0, for which the λ parameter does not coincide with the

eigenvalue νk0
of the ∆ operator, a system of corresponding differential equations

is made and solved.
Step 8. The system of differential equations is solved with Showalter – Sidorov

initial conditions.

3. Computational Experiments

Consider a five-edge graph with six vertices, shown in Figure 1, the lengths of
all edges are equal: lj = 2π and the diameter of the sections is the same for all
edges dj = 1, j = 1, 2, ..., 5.

For such a graph, let us write down the continuity conditions (1.5)

ζ1(π)− ζ2(0) = 0,
ζ1(π)− ζ4(0) = 0,
ζ2(π)− ζ3(0) = 0,
ζ4(π)− ζ5(0) = 0

(3.1)
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Figure 1. The graph for computational experiment

and the flow balance conditions (1.6)

ζ1x(0) = 0,
ζ1x(2π)− ζ2x(0)− ζ3x(0) = 0,

ζ2x(2π)− ζ3x(0) = 0,
ζ4x(2π)− ζ5x(0) = 0,

ζ3x(π) = 0,
ζ5x(π) = 0.

(3.2)

With the given coefficients β = 0, 4, λ = 25, the Oskolkov equations will be set on
the edges of the graph

25dζj + dζjxx = 0, 4ζjxxdt+NdWj , j = 1, 2, ..., 5. (3.3)

We will look for solutions ζj(t, x), j = 1, 2, ..., 5 of this problem in the form of
Galerkin sums, by taking 6 summands.

ζj(t, x) =

6∑
k=1

ak(t)φj,k(x), j = 1, 2, ..., 5.

Having solved the Sturm–Liouville problem, we get

λk = k2,

φ1,k(x) =
√

2
15π cos(kx),

φ2,k(x) =
√

1
30π (cos(kx) + cos(k(x− 4π)) + cos(k(x− 8π))),

φ3,k(x) =
√

1
120π (cos(k(x+ 6π)) + cos(k(x− 10π)) + 2 cos(k(x− 2π))+

+cos(k(x+ 2π)) + cos(k(x− 6π))),

φ4,k(x) =
√

1
30π (cos(k(x− 2π)) + cos(k(x− 6π))),

φ5,k(x) =
√

1
30π (cos(kx) + cos(k(x− 4π))).

Of note, λ = λ5.
We will assume that the system is exposed to the same effect, therefore all

random variables here are normally distributed Gaussian quantities ∼ N(0; 1, 25).
Using the Showalter – Sidorov initial conditions, let us obtain a representation

for the initial values considered as follows

P (ζ(0)− ξ0) =
∑

k:µk∈σL(M)

⟨ζ(0, x)− ξ0(x), φk⟩φk = 0, (3.4)

further ξ0 = (ξ1,0, ξ2,0, ξ3,0, ξ4,0, ξ5,0) according to the number of edges j = 5.
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As a result of the generation of random variables included in the decomposition
for the functions of the initial condition, we obtained

ξ1,01 = −3, 27506776941, ξ1,02 = −1, 36125225452, ξ1,03 = −0, 0374554524740,
ξ1,04 = −1, 62043139820, ξ1,06 = −0, 890328852651;

ξ2,01 = 1, 60281626452, ξ2,02 = 0, 408184155311, ξ2,03 = 0, 265945587541,
ξ2,04 = 0, 856971714096, ξ2,06 = −1, 00930692980;

ξ3,01 = 0, 958534529949, ξ3,02 = 0, 120316052745, ξ3,03 = 1, 02490924543,
ξ3,04 = −0, 370702322849, ξ3,06 = 0, 393900792945;

ξ4,01 = −0, 494744421722, ξ4,02 = 0, 00570200585236, ξ4,03 = 1, 02337140616,
ξ4,04 = −0, 190279173650, ξ4,06 = −0, 769749348792;

ξ5,01 = 0, 980319608250, ξ5,02 = −1, 689598303, ξ5,03 = −0, 967844689800,
ξ5,04 = −1, 91954474140, ξ5,06 = −1, 70725764039.

The external effect on each edge may be represented by decomposition

NdWj = A sin(wt)ϕ1φ1(x) +A sin(wt)ϕ2φ2(x) +A sin(wt)ϕ3φ3(x)+
−A sin(wt)ϕ1φ4(x) +A sin(wt)φ6(x)

with A = 1.59459504258, w = 5, ϕk = (ϕ1k , ϕ2k , ϕ3k , ϕ4k , ϕ5k) in accordance with
the number of edges j = 5.

The generation of random variables included in the decomposition for random
external action gave the following results:

ϕ11 = 0, 163047495059, ϕ12 = −1, 63591146136, ϕ13 = −0, 684145716945,
ϕ14 = 1, 70539232724, ϕ15 = 1, 62659212805;

ϕ21 = −1, 64638499412, ϕ22 = −0, 0658169964062, ϕ23 = 0, 429340925424,
ϕ24 = −2, 85293688880, ϕ25 = −0, 390588206061;

ϕ31 = −1, 39574691274, ϕ32 = −1, 88806707585, ϕ33 = 0, 954004456482,
ϕ34 = 0, 899288864784, ϕ35 = −0, 488478751168;

ϕ41 = 1, 88421514070, ϕ42 = −0, 243309185254, ϕ43 = −0, 107823473285,
ϕ44 = 0, 531389289132, ϕ45 = −2, 06626981338;

ϕ51 = −0, 735193065646, ϕ52 = −1, 44835524134, ϕ53 = 0, 247186393888,
ϕ54 = 3, 64531828196, ϕ55 = −0, 589661784796.

The system of differential equations contains five equations for ak(t). Obtained
was one algebraic equation, the fifth one (since the fifth eigenvalue equals λ).
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50, 0000000000
da1(t)

dt
+

+(6, 94399999180 cos4(t)− 5, 20799999385 cos2(t) + 0, 433999999488) sin(t) = 0,

26, 0000000001
da2(t)

dt
+ 0.399999999999a2(t)+

+(26, 2748953373 cos4(t)− 19, 7061715030 cos2(t) + 1, 64218095857) sin(t) = 0,

29, 0000000001
da3(t)

dt
+ 1, 59999999999a3(t)+

+(−8, 73495968431 cos4(t) + 6, 55121976324 cos2(t)− 0, 545934980270) sin(t) = 0,

33, 9999999999
da4(t)

dt
+ 1, 59999999999a3(t)+

+(−5, 05641187458 cos4(t) + 3, 79230890600 cos2(t)− 0, 316025742165) sin(t) = 0,
a5(t) = 0,

41, 0000000000
da6(t)

dt
+ 6, 40000000000a6(t)+

+(2, 61619669064 cos4(t)− 1, 96214751799 cos2(t) + 0, 163512293166) sin(t) = 0.

The following initial values are obtained for solving the Showalter – Sidorov prob-
lem

a1(0) = −0, 392191341073,
a2(0) = 0, 116407043162,
a3(0) = 0, 374812563896,
a4(0) = −0, 437183729135,
a5(0) = 0,
a6(0) = −0, 532669260320.

Solutions are obtained

a1(t) = 1, 00000000000 · 10−14 cos(t) + 0, 001735999997 cos(5t)− 0, 393927341071,
a2(t) = −6, 72917652624 · 10−13 cos(t)− 5, 63788659793 · 10−12 sin(t)−
−8, 01260979327 · 10−14 cos(3t) + 4, 10903066319 · 10−16 sin(3t)+
+0, 0126320416265 cos(5t)− 0, 388678203890 · 10−4 sin(5t)+
+0, 1103775001536e−0.0153846153845t,
a3(t) = 4, 29726397647 · 10−14 cos(t)− 2, 37090426285 · 10−15 sin(t)+
−2, 15444373418 · 10−14 cos(3t)− 3, 96219537316 · 10−16 sin(3t)−
−0, 376461045118 · 10−2 cos(5t) + 0, 415405291161 · 10−4 sin(5t)+
+0, 378577174347e−0,055172413782t,
a4(t) = 3, 63571037504 · 10−13 cos(t)− 3, 84957569124 · 10−14 sin(t)+
+5, 88813426710 · 10−13 cos(3t)− 5, 61584185793 · 10−15 sin(3t)−
−0, 185814168344 · 10−2 cos(5t) + 0, 393488827082cdot10−4 sin(5t)+
−0, 435325587452e−0,105882352941t,
a5(t) = 0,
a6(t) = −3, 57151153337 · 10−14 cos(t) + 5, 575042393557 · 10−15 sin(t)−
−2, 02703237187 · 10−14 cos(3t) + 1, 05471603089 · 10−15 sin(3t)+
+0, 796844291651 · 10−3 cos(5t)− 0, 248770900808 · 10−4 sin(5t)+
−0, 533466104612e−0,156097560976t.

Next, the approximate solution to the Showalter – Sidorov problem is found on
the graph in question. The analytical result is rather cumbersome; therefore, the
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results of the computational experiment are presented graphically (Figs. 2 – 3.)
in the form of two-dimensional graphs at various points in time t∗. The abscissa
axis reflects the values of the variable x and reflects the length of the edges of the
graph. The ordinate axis reflects the values of the ζ̃j(x, t

∗) function: the dynamics
of pressure and velocity of a viscoelastic incompressible fluid moving in the jth
section of the pipeline with random external effect.

The colors show solutions on different edges of the graph: ζ̃1(x, t
∗) – blue,

ζ̃2(x, t
∗) – green, ζ̃3(x, t

∗) – black, ζ̃4(x, t
∗) – red, ζ̃5(x, t

∗) – magenta.
The sequence of graphs reflects the development of the process over time, taking

into account the structure of the graph.

Figure 2. Results of computational experiment.
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Figure 3. Results of computational experiment.
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