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Abstract. This paper gives new expansions of characteristic functions of
convolution of symmetric probability distributions with an explicit estimate
of the remainder.

1. Introduction

Let ξ, ξ1, ξ2, . . . be independent identically distributed random variables with
zero mean and unit variance. Let ξ be symmetric around zero with the real
characteristic function f(t). The normalized sums

ξ1 + . . .+ ξn√
n

have distribution function Fn(x) and characteristic function fn
(
t√
n

)
.

The present paper is concerned with expansions of characteristic functions of
convolution of distributions fn

(
t√
n

)
and estimating the remainders. Note that

while constructing asymptotic expansions in the Central limit theorem (CLT),
the expansions of characteristic functions of convolution of distributions are often
used.

We use expansions containing the last known moment of the random variable
ξ in their main part. It’s idea was proposed by H. Prawitz in [5]

f(t) =

m−1∑
k=0

αk(it)
k +

m

2(m+ 1)
αm(it)m +

m+ 2

2(m+ 1)
βm(it)mγ(t),

where for k ≤ m+ 2

αk = αk(P) =
Mξk

k!
, βk = βk(P) =

M|ξ|k

k!
,

γ(t), here and futher, are different complex functions such that |γ| ≤ 1.
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This result of Prawitz has been generalized by I.G. Shevtsova [12]. In the
notation of this paper, one of her results can be represented by the following
theorem.

Theorem 1.1. For any r.v. ξ with the characteristic function f(t) and M|ξ|m <∞
for some m ∈ N, for all t ∈ R the following estimates hold:∣∣∣∣∣f(t)−

m−1∑
k=0

αk(it)
k

∣∣∣∣∣ ≤ inf
λ≥0

(
λ|αm|+ qm(λ)βm

)
· |t|m, (1.1)

where

qm(λ) = sup
x>0

m!

xm

∣∣∣∣∣eix −
m−1∑
k=0

(ix)k

k!
− λ

(ix)m

m!

∣∣∣∣∣ , λ ≥ 0. (1.2)

V.V. Senatov obtained in [11, p. 189] two expansions of the real characteristic
function, wich are generalized in this paper. It is easily seen that expansions in
[11, p. 189] are valid for any even number m+ 2 and

f(t) =

m∑
k=0

αk(it)
k + λαm+2(it)

m+2 + λαm+2(it)
m+2γ(t), (1.3)

where

λ = max{λ, 1− λ}, 0 ≤ λ < 1.

For the comparison of (1.2) and (1.3) it is worth noting (see [12]) that qm(λ) ≥
max{λ, |1− λ|} and

qm(λ) = 1− λ for 0 ≤ λ ≤ m

2(m+ 1)
.

While constructing in the CLT the expansions with and explicit estimation of
the remainder, it is convenient to apply [15] the decomposition for the function

f(t)et
2/2 in terms of the Senatov moments [7, 8]

θk = θk(P) =
1

k!

∞∫
−∞

Hk(x) dF (x),

where

Hk(x) = (−1)k · φ
(k)(x)

φ(x)

are the Chebyshev — Hermite polynomials [1, p. 21] of degree k, φ(x) is the prob-
ability density function of the standard normal (cumulative) distribution function
Φ(x).

As well known [4]

Hk(x)

k!
=

[k/2]∑
j=0

(−1)jα2j(φ)
xk−2j

(k − 2j)!
.
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The latter formula for Hk(x) allows us to express moments θk in terms of moments
αk and α2j(φ), so [3]

θk =

[k/2]∑
j=0

(−1)jα2j(φ)αk−2j(P). (1.4)

For the before introduced random variable ξ it follows that

α0 = 1, α1 = 0, α2 =
1

2
. (1.5)

The respective quantities for the standard normal law denote by αk(φ), βk(φ), for
example,

α2j(φ) =
1

2j · j!
, α2j+1(φ) = 0, j = 0, 1, 2, . . . .

At the same time, it is clear that always θ0 = 1. From (1.5) and (1.4) it is seen
that

θ1 = α1(P)α2(φ) = 0,

θ2 = α2(P)α0(φ)− α0(P)α2(φ) =
1

2
− 1

2
= 0,

θ3 = α3(P)α0(φ)− α1(P)α2(φ) = α3 = 0.

Due to the symmetry of the distribution P of ξ, it follows that the odd Senatov
moments are equal to zero,

θ2k+1 =

k∑
j=0

(−1)jα2j(φ)α2k+1−2j(P) = 0. (1.6)

The incomplete Senatov moments

θ
(k−2)
k =

[k/2]∑
j=1

(−1)jα2j(φ) · αk−2j(P),

are included in the Senatov moments with the parameter λ (see [11])

θ
(λ)
m+2 = λαm+2 + θ

(m)
m+2.

The Senatov moments θl(Pn) of probability distribution Pn of normalized sum
for l ≥ 3 can be expressed in terms of the moments θ3, . . . , θl of the probability
distribution P as (see [7, 8, 3])

θl(Pn) =
∑ n!

j0!j3! · · · jl!

(
θ3
n3/2

)j3
· · ·
(

θl
nl/2

)jl
, (1.7)

where summation is performed for all sets of integer nonnegative numbers j0, j3,
. . . , jl such that

3j3 + . . .+ ljl = l, j0 + j3 + . . .+ jl = n.

While constructing asymptotic expansions, the Senatov quasi-moments θ
(s)
l (Pn)

are used for s = 1, 2, . . . , l − 1. To calculate them, we can apply (1.7) for θl(Pn),

the summand with moments θ
(s)
l (Pn), l > s, not to be taken into account. That
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quasi-moments were first used by V.V. Senatov and more information about them
can be found in [9, ch. 4, §4].

In the statement of main result below, the Senatov moments will appear as the
sum of its product:

Θs,l =
∑

k1+···+ks=l

θk1 . . . θks , kj ≥ 4, j = 1, . . . ,m− 1. (1.8)

The asymptotic expansions will be considered under the following assumptions:
the distribution P with zero mean and variance one has a finite even moment of
order m + 2, some positive number ν > 0 exists so that the function |f (t)|ν is
integrable on the whole real line, e.g.

∞∫
−∞

∣∣f(t)∣∣νdt <∞ . (1.9)

The convergence of the last integral guarantees the existence of a continuous
density pn (x) of distribution Pn for all n ≥ ν. In this case, the inverse Fourier
transform gives density

pn(x) =
1

2π

∞∫
−∞

e−itxfn
(

t√
n

)
dt . (1.10)

In addition, this assumption guarantees that the value

α(T ) = max
{∣∣f(t)∣∣ : t ≥ T

}
is strictly less than one for all T > 0.

Applying the function

µ(t) = max
{∣∣f(t)∣∣; e−t2/2}

proposed by V.Yu. Korolev, define the integrals

Bl,n−k =
1

2π

T
√
n∫

−T
√
n

|t|l µn−k
(

t√
n

)
dt , (1.11)

for any non-negative l, k, n with n ≥ k.
These integrals turn out to be connected with moments of the standard normal

distribution. So, for any distribution P with the finite fourth moment, the param-
eter T > 0 can be chosen (see, for example, [11], [9, p. 154]) so that for all l there
is a limit

lim
n→+∞

Bl,n−k = Bl , (1.12)

where

Bl =
βl(φ)√

2π
=

1

2π

∞∫
−∞

|t|l e−t
2/2 dt .
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It is assumed further that the property (1.12) is valid. The value

An(T ) =

√
n

π
αn−ν (T )

∞∫
T

∣∣f(t)∣∣νdt ,
Ll (u) =

1

2π

∫
|t|≥u

|t|l e−t
2/2 dt . (1.13)

will be used through the paper.
In this paper, as in [10], Zolotarev’s ideal metric ζ3 = ζ3(P,Φ) (see, for example,

[18, 6]) is

sup

{∣∣∣∣∫ ∞

−∞
u(x)

(
P(dx)− Φ(dx)

)∣∣∣∣ : u ∈ F̃3

}
,

where F̃3 is the class of the bounded real-valued function u(x), −∞ < x < ∞,
three times differentiable, and

∣∣u(3)(x)∣∣ ≤ 1 [6, p. 101]. For all real t ∈ R the
inequalities ∣∣∣f(t)− e−t

2/2
∣∣∣ ≤ |t|3 ζ3 (1.14)

and |θ3|
3! ≤ ζ3 are valid. Last inequality can not be improved in the sense that for

any number 0 < c < 1 there is a distribution P with zero mean and unit variance

such |θ3|
3! > cζ3.

The function µ (t) is used as estimates for functions f (t) and g (t) = e−
t2

2 . In
case k < n for the sum

Sk =
∑

0≤j1+...+jk≤n−k

fn−j1−...−jk−kgj1+...+jk+k

the estimate

|Sk| ≤ Cknµ
n . (1.15)

holds. Indeed,

|Sk| ≤

∣∣∣∣∣∣
∑

0≤j1+...+jk≤n−k

µn−j1−...−jk−kµj1+...+jk+k

∣∣∣∣∣∣ = µn
∑

0≤j1+...+jk≤n−k

1 = Cknµ
n .

The last equality is true becouse if k < n then the number of non-negative integer
solutions j1, ..., jk of the inequality 0 ≤ j1 + ...+ jk ≤ n− k is Ckn.

We use (1.14) only in following reasoning. From (1.14) for

ψ = ψ (t) = f (t) e
t2

2 − 1 (1.16)

follows the next inequality

|ψ (t)| ≤ |t|3 ζ3µ−1 , (1.17)

and application of (1.15) gives

|Skψ (t)| ≤ Cknζ3 |t|
3
µn−1 . (1.18)
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2. Expansions of the characteristic function of symmetric distributions

The following two expansions of characteristic functions will be used in con-
structing expansions of characteristic functions of convolution distributions. The
first of them is quite standard in line with the article [14], the parameter λ is not
included. The second expansion contains the parameter λ, and its proof relies on
equality (1.3). It is worth noting that in the proof of the theorem, the expansion
of characteristic functions with parameter λ will be used only once.

To estimate the remainder of the expansions of characteristic functions, we need
the following values

∥θs∥ =

[s/2]∑
j=0

|αs−2j |α2j (φ) (2.1)

and ∥∥θ0s+2

∥∥ = βs+2 + ∥θs∥α2 (φ) . (2.2)

Proposition 2.1. Let symmetric probability distribution P has a finite moment
of even order (m+ 2) ≥ 2. Then for all even 2 ≤ s ≤ m the characteristic
function f (t) of distribution P has the expansions

f (t) = e−
t2

2

s∑
k=0

θk (it)
k
+Rf,s (t) . (2.3)

Moreover

|Rf,s (t)| ≤
∥∥θ0s+2

∥∥ |t|s+2
. (2.4)

Proof. Let t ∈ R and ω = it. It is known that

f(t) =

s+1∑
k=0

αkω
k + ρs+1(t) , |ρs+1(t)| ≤ βs+2t

s+2

and

e
t2

2 = e−ω
2/2 =

∞∑
k=0

b2jω
2j ,

where

b2j =
(−1)

j

j!2j
= (−1)

j
α2j(φ) .

Observe that the product

f(t)e
t2

2 =

∞∑
j=0

b2jω
2j
s+1∑
k=0

αkω
k + ρs(t)e

t2

2

can be transformed to

f(t)e
t2

2 =

s+1∑
k=0

θkω
k +

∞∑
k=s+2

θ
(s+1)
k ωk + ρs(t)e

t2

2 .
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A GENERALIZATION OF A RESULT OF V.V. SENATOV

Let’s break the third component from the right part of the last equality into two
parts

∞∑
k=0

θ
(s+1)
s+2+kω

s+2+k =

∞∑
k=0

θ
(s)
s+2+kω

s+2+k =

= ωs+2
∞∑
k=0

θ
(s)
s+2+2kω

2k + ωs+3
∞∑
k=0

θ
(s)
s+3+2kω

2k .

The symmetring of distribution P for even s leads to θ2k+1 = 0 and θ
(s)
s+3+2k = 0

for all natural k ∈ N.
For this reason,

f(t)e
t2

2 =

s∑
k=0

θkω
k + ωs+2

∞∑
k=0

θ
(s)
s+2+2kω

2k + ρs+1 (t) e
t2

2 .

We can represent Senatov quasi-moments from last formula as follows

θ
(s)
s+2+2k =

[(s+2k+2)/2]∑
j=0; 2j≥2k+2

αs+2k+2−2jb2j =

=

[s/2]+k+1∑
j=k+1

αs−2(j−k−1)b2j =

[s/2]∑
j=0

αs−2jb2(k+1+j).

Then ∣∣∣θ(s)s+2+2k

∣∣∣ ≤ α2k (φ)

[s/2]∑
j=0

|αs−2j |α2j+2 (φ) = α2 (φ)α2k (φ) ∥θs∥

because ∣∣b2(k+1+j)

∣∣ ≤ |b2k| |b2j+2| .
Hence∣∣∣∣∣ωs+1

∞∑
k=0

θ
(s)
s+2+2kω

2k+1

∣∣∣∣∣ ≤
≤ α2 (φ) |t|s+2

∞∑
k=0

α2k (φ) |t|2k ∥θs∥ =

= ts+2et
2/2α2 (φ) ∥θs∥ .

So the proof is completed. □

Corollary. From (2.3) for (1.16) it follows that

ψ

(
t√
n

)
= e

t2

2n f

(
t√
n

)
− 1 =

=

s∑
k=4

θk

(
t√
n

)k
+ e

t2

2 Rf,s

(
t√
n

)
(2.5)

for all even 2 ≤ s ≤ m. In case s = 2 the sum by k in (2.5) is not included.
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Now let us obtain the expression for characteristic function f (t) with the pa-
rameter λ in its expansion folloing the main ideas of [15].

Proposition 2.2. Let symmetric probability distribution P with the characteristic
function f (t) has a finite moment of even order (m+ 2) ≥ 2. Then

f (t) =

(
m∑
k=0

θk (it)
k
+ θ

(λ)
m+2 (it)

m+2

)
e−

t2

2 +

+γλ̄αm+2 |t|m+2
+ γ

∥∥∥θ(m+2,λ)
m+4

∥∥∥ |t|m+4
, (2.6)

where

θ
(λ)
m+2 = λαm+2 + θ

(m)
m+2 (2.7)

and ∥∥∥θ(m+2,λ)
m+4

∥∥∥ = λαm+2α2 (φ) + ∥θm∥α4 (φ) . (2.8)

Proof. The generalization of the above mentioned result of the article [11, p. 189]
gives (see more about in [15])

f(t) =

m+1∑
k=0

αkω
k + λαm+2ω

m+2 + ρm+2 (λ, t) , |ρm+2 (λ, t)| ≤ λαm+2 |t|m+2
.

As at the initial steps of the proof in the previous proposition, we get

f(t)e
t2

2 =

∞∑
j=0

b2jω
2j

m∑
k=0

αkω
k + λαm+2ω

m+2e
t2

2 + ρm+2 (λ, t) e
t2

2 =

=

m∑
k=0

θkω
k + ωm+2

∞∑
k=0

θ
(m)
m+2+2kω

2k + λαm+2ω
m+2e

t2

2 +

+ρm+2 (λ, t) e
t2

2 =

m∑
k=0

θkω
k + ωm+2

∞∑
k=1

θ
(m)
m+2+2kω

2k + θ
(m)
m+2ω

m+2+

+λαm+2ω
m+2e

t2

2 + ρm+2 (λ, t) e
t2

2 =

m∑
k=0

θkω
k + ωm+4

∞∑
k=0

θ
(m)
m+4+2kω

2k+

+θ
(m)
m+2ω

m+2 + λαm+2ω
m+2e

t2

2 + ρm+2 (λ, t) e
t2

2 .

Senatov quasi-moments can be represented as

θ
(s)
s+4+2k =

[(s+2k+4)/2]∑
j=0; 2j≥2k+4

αs+2k+4−2jb2j =

=

[s/2]+k+2∑
j=k+2

αs−2(j−k−2)b2j =

[s/2]∑
j=0

αs−2jb2(k+j+2).

It is not hard to verify that∣∣b2(k+2+j)

∣∣ ≤ |b2k| |b4| |b2j |
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and ∣∣∣θ(s)s+4+2k

∣∣∣ ≤ α4 (φ)α2k (φ)

[s/2]∑
j=0

|αs−2j |α2j (φ) =

= α4 (φ)α2k (φ) ∥θs∥ .
Hense∣∣∣∣∣ωs+4

∞∑
k=0

θ
(s)
s+4+2kω

2k

∣∣∣∣∣ ≤ α4 (φ) |t|s+4
∞∑
k=0

α2k (φ) |t|2k ∥θs∥ = ts+4et
2/2α4 (φ) ∥θs∥ .

Thus, it remains in the asymptotic expansion

f(t)e
t2

2 =

m∑
k=0

θkω
k + ωm+4

∞∑
k=0

θ
(m)
m+4+2kω

2k+

+ θ
(m)
m+2ω

m+2 + λαm+2ω
m+2e

t2

2 + ρm+2 (λ, t) e
t2

2

to consider only the term λαm+2ω
m+2e

t2

2 , since the estimate for ρm+2 (λ, t) e
t2

2

follows immediately from the estimate |ρm+2 (λ, t)| ≤ λαm+2 |t|m+2
.

Write

λαm+2ω
m+2e

t2

2 = λαm+2ω
m+2 + λαm+2ω

m+2
∞∑
j=1

b2jω
2j

where ∣∣∣∣∣∣λαm+2ω
m+2

∞∑
j=1

b2jω
2j

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣λαm+2ω

m+4
∞∑
j=0

b2j+2ω
2j

∣∣∣∣∣∣ ≤
≤

∣∣∣∣∣∣λαm+2ω
m+4α2 (φ)

∞∑
j=0

b2jω
2j

∣∣∣∣∣∣ = λαm+2α2 (φ) e
t2

2 |t|m+4
.

Then (2.3) follows and the proof is completed.
□

3. Main result: Expansion of characteristic functions of convolutions
of distributions

The following theorem presents the main result about the expansion of the
characteristic function of the convolution of distributions with an explicit estimate
of the remainder. Note, that the last known moment of the initial distribution P
is included in the main part of the expansion. This allows us to obtain the best
explicit estimate of the remainder.

Theorem 3.1. Let f (t) is the characteristic function of symmetric distributions
P with finite moments up to even m + 2 ≥ 4 included. If the condition (1.9) is
fulfilled, then for n ≥ m+ 2

fn
(

t√
n

)
= e−t

2/2 + e−t
2/2

m/2∑
s=1

Csn

m−4+4s∑
l=4s

Θs,l

(
it√
n

)l
+
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+θ
(λ)
m+2

(it)
m+2

(
√
n)
m e−

t2

2 +

m/2∑
s=1

rs +R0 +Rψm+2
2 ,m

, (3.1)

where

|r1| ≤

(
λ̄αm+2

|t|m+2

nm/2
+
∥∥∥θ(m+2,λ)
m+4

∥∥∥ |t|m+4

nm/2+1

)
µn−1

(
t√
n

)
,

|R0| ≤
1

2
ζ3

∣∣∣θ(λ)m+2

∣∣∣ |t|m+5

nm/2+1/2
µn−1

(
t√
n

)
,

|rs| ≤ ∥Θs,m+4s−2∥
|t|m+4s−2

(
√
n)
m+2s−2µ

n−1

(
t√
n

)
, 2 ≤ s ≤ m

2
,

∣∣∣Rψm+2
2 ,m

∣∣∣ ≤ C
m+2

2
n ζ3

3m−4∑
k=2m

|Θs−1,k|
∣∣∣∣ t√n

∣∣∣∣k+3

µn−1

(
t√
n

)
.

So the last theorem can be used to build a new asymptotic expansions [10, 13]
in the CLT with an explicit estimate of the remainder.

Remark 3.2. The estimate of the remainder can be written as

λ · αm+2

nm/2
|t|m+2

µn−1

(
t√
n

)
+O

(
|t|m+5

nm/2+1/2

)
. (3.2)

4. Proof of theorem

We break our proof up into 4 steps.

1. Here we consider the difference fn
(

t√
n

)
− e−t

2/2, which can be written as

fn
(

t√
n

)
− gn

(
t√
n

)
, where g (t) = e−t

2/2. (Further, the arguments of some

functions will often be suppressed.)

The equality

an − bn = (a− b)

n−1∑
j=0

an−j−1bj

for any complex numbers a and b is well known. It follows that

fn
(

t√
n

)
− gn

(
t√
n

)
= fn − gn =

= (f − g)

n−1∑
j1=0

fn−j1−1gj1 = ψ

n−1∑
j1=0

fn−j1−1gj1+1 = ψS1 , (4.1)

where ψ given by the formula (1.16).
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From (2.6) that for m ≥ 4 we have

ψ

(
t√
n

)
=

m∑
k=4

θk

(
it√
n

)k
+ θ

(λ)
m+2

(
it√
n

)m+2

+ e
t2

2 Rf,m+2

(
t√
n

)
.

Therefore, the right part of (4.1) is equal to

ψS1 =

(
m∑
k=4

θk

(
it√
n

)k
+ θ

(λ)
m+2

(
it√
n

)m+2
)
S1 + S1e

t2

2 Rf,m+2

(
t√
n

)
=

=

(
m∑
k=4

θk

(
it√
n

)k
+ θ

(λ)
m+2

(
it√
n

)m+2
)
S1 + r1 ,

where

|r1| ≤
∣∣∣∣Rf,m+2

(
t√
n

)∣∣∣∣µn−1

(
t√
n

)
or more explicitly

|r1| ≤

(
λ̄αm+2

|t|m+2

nm/2
+
∥∥∥θ(m+2,λ)
m+4

∥∥∥ |t|m+4

nm/2+1

)
µn−1

(
t√
n

)
.

Recall that the quantities
∥∥∥θ(m+2,λ)
m+4

∥∥∥ are determined in (2.8). Next conversions

S1 =

n−1∑
j1=0

fn−j1−1gj1+1 =

n−2∑
j1=0

(
fn−j1−1 − gn−j1−1

)
gj1+1 +

n−1∑
j1=0

gn =

=

n−1∑
j1=0

gn +

n−2∑
j1=0

(f − g)

n−j1−2∑
j2=0

fn−j1−j2−2gj2

 gj1+1 =

=

n−1∑
j1=0

gn + (f − g)

n−2∑
j1=0

n−j1−2∑
j2=0

fn−j1−j2−2gj1+j2+1 =

= ngn + ψ
∑

0≤j1+j2≤n−2

fn−2−j1−j2gj1+j2+2 =

= ngn + ψS2 = C1
ng

n + ψS2

allow us to write out the equality

S1 = C1
ne

− t2

2 + ψS2 (4.2)

and get the representation

fn − gn =

(
m∑
k=4

θk

(
it√
n

)k
+ θ

(λ)
m+2

(
it√
n

)m+2
)
S1 + r0 =

=

(
m∑
k=4

θk

(
it√
n

)k
+ θ

(λ)
m+2

(
t√
n

)m+2
)(

ne−
t2

2 + ψS2

)
+ r0 =

149



V.N. SOBOLEV AND A.E. CONDRATENKO

= C1
ne

− t2

2

(
m∑
k=4

θk

(
it√
n

)k
+ θ

(λ)
m+2

(
it√
n

)m+2
)

+ ψS2

m∑
k=4

θk

(
it√
n

)k
+R0 + r1 ,

(4.3)
where

|R0| ≤
∣∣∣θ(λ)m+2

∣∣∣ ∣∣∣∣ t√n
∣∣∣∣m+2

|ψS2| ≤
∣∣∣θ(λ)m+2

∣∣∣ ∣∣∣∣ t√n
∣∣∣∣m+5

ζ3C
2
nµ

n−1

(
t√
n

)
≤

≤ ζ3
2

∣∣∣θ(λ)m+2

∣∣∣ |t|m+5

(
√
n)
m+1µ

n−1

(
t√
n

)
.

by (1.18).
2. Obviously, if in (4.3) m = 2 the summand

Rψ2,m = ψS2

m∑
k=4

θk

(
it√
n

)k
will be missing (it will completely enter into R0). In this case, (4.3) takes the form

fn
(

t√
n

)
− e−t

2/2 = λα4
t4

n
e−t

2/2 +R0 + r1 , (4.4)

where

|r1| ≤
(
λ̄α4 +

∥∥∥θ(4,λ)6

∥∥∥ t2
n

)
· t

4

n
· µn−1

(
t√
n

)
,

|R0| ≤
1

2
ζ3

∣∣∣θ(λ)4

∣∣∣ · |t|7

n3/2
· µn−1

(
t√
n

)
.

It coincides with the statement of the teorem when m = 2. The expression (4.4)
was obtained in [11, p. 191] with a slightly different estimate of the remainder.
3. For m = 4 the rate of decrease of the estimate for the remainder equal to 1

n2 ,
and the relation (4.3) turns into

fn−gn = C1
ne

− t2

2

(
θ4

(
it√
n

)4

+ θ
(λ)
6

(
it√
n

)6
)
+ψS2θ4

(
it√
n

)4

+R0+r1 , (4.5)

where

|r1| ≤
(
λ̄α6

t6

n2
+
∥∥∥θ(6,λ)8

∥∥∥ t8
n3

)
µn−1

(
t√
n

)
,

|R0| ≤
ζ3

∣∣∣θ(6,λ)6

∣∣∣
2

|t|9

n5/2
µn−1

(
t√
n

)
.

The second sum from the right side (4.5)

ψ · S2θ4

(
it√
n

)4

by the inequality (1.18) can be estimated as∣∣∣∣∣ψS2θ4

(
it√
n

)4
∣∣∣∣∣ ≤ C2

nζ3 |µ|
n−1 |t|3

n3/2
|θ4|

∣∣∣∣ t√n
∣∣∣∣4 ≤ ζ3 |θ4|

2

|t|7

n3/2
|µ|n−1

.
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The rate of convergence of the last estimate is 1
n3/2 and not 1

n2 . We found a
lower convergence rate in the estimate than it is needed. Therefore, we split this
summand into two parts using the representation (2.5). Thus,

Rψ2,4 = ψS2

m∑
k=4

θk

(
it√
n

)k
=

= S2

m∑
k1=4

θk1

(
it√
n

)k1
·

(
m+4−k1∑
k2=4

θk2

(
it√
n

)k2
+ e

t2

2 Rf,m+4−k1

)
=

= S2

m∑
k1=4

m+4−k1∑
k2=4

θk1θk2

(
it√
n

)k1+k2
+

+

m∑
k1=4

θk1

(
it√
n

)k1
e

t2

2 Rf,m+4−k1

(
t√
n

)
S2 =

= S2

 ∑
8≤k1+k2≤m+4

θk1θk2

(
it√
n

)k1+k2+ r2 ,

where k1, k2 ≥ 4.
It follows from (1.15) and (2.4) that

|r2| ≤ C2
n

m∑
k1=4

|θk1 |
∣∣∣∣ t√n

∣∣∣∣k1 ∣∣∣∣Rf,m+4−k1

(
t√
n

)∣∣∣∣µn−1

(
t√
n

)
≤

≤ 1

2

m∑
k1=4

|θk1 |
∣∣∣∣ t√n

∣∣∣∣k1 ∥∥θ0m+6−k1

∥∥ |t|m+6−k1

(
√
n)
m+2−k1 µ

n−1

(
t√
n

)
=

=
1

2

m∑
k1=4

|θk1 |
∥∥θ0m+6−k1

∥∥ |t|m+6

(
√
n)
m+2µ

n−1

(
t√
n

)
=

= ∥Θ2,m+6∥
|t|m+6

(
√
n)
m+2µ

n−1

(
t√
n

)
,

where

∥Θ2,m+6∥ =
1

2

m∑
k1=4

|θk1 |
∥∥θ0m+6−k1

∥∥ .
Applying the equality

m∑
k1=4

m+4−k1∑
k2=4

θk1θk2

(
it√
n

)k1+k2
=

=
∑

8≤k1+k2≤m+4

θk1θk2

(
it√
n

)k1+k2
=

m+4∑
k=8

Θ2,k

(
it√
n

)k
,
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we get that

fn − gn = C1
ne

− t2

2

(
m∑
k=4

θk

(
it√
n

)k
+ θ

(λ)
m+2

(
it√
n

)m+2
)
+

+S2

m+4∑
k=8

Θ2,k

(
it√
n

)k
+R0 + r1 + r2 . (4.6)

The reasoning that leads to (4.2) allows us to write the equality

S2 = C2
ng

n + ψ · S3 .

The last formula allows to divide the summand containing S2 on the right part of
(4.6) into two parts

S2

m+4∑
k=8

Θ2,k

(
it√
n

)k
= C2

ng
n
m+4∑
k=8

Θ2,k

(
it√
n

)k
+ ψ · S3

m+4∑
k=8

Θ2,k

(
it√
n

)k
=

= C2
ng

n
m+4∑
k=8

Θ2,k

(
it√
n

)k
+Rψ3,m .

Thus, (4.6) can be represented in the form

fn − gn = C1
ne

− t2

2

(
m∑
k=4

θk

(
it√
n

)k
+ θ

(λ)
m+2

(
it√
n

)m+2
)
+

+C2
ne

− t2

2

m+4∑
k=8

Θ2,k

(
it√
n

)k
+R0 + r1 + r2 +Rψ3,m . (4.7)

From the inequality (1.18) for ψ · S3 it follows that

∣∣∣Rψ3,m∣∣∣ =
∣∣∣∣∣ψ · S3

m+4∑
k=8

Θ2,k

(
it√
n

)k∣∣∣∣∣ ≤ C3
nζ3 |µ|

n−1 |t|3

n3/2

m+4∑
k=8

|Θ2,k|
∣∣∣∣ t√n

∣∣∣∣k ,
and, putting m = 4, we have

∣∣∣Rψ3,4∣∣∣ =
∣∣∣∣∣ψ · S3Θ2,8

(
it√
n

)8
∣∣∣∣∣ ≤ ζ3 |Θ2,8|

3!

|t|11

n5/2
|µ|n−1

.

Thus we get the estimate for the convergence rate of order 1
n5/2 and it is better

than 1
n2 . Clearly order of this estimate is the same for any m ≥ 4.

So, at this step we have obtained the following asymptotic expansion

fn = e−
t2

2 + C1
ne

− t2

2

(
m∑
k=4

θk

(
it√
n

)k
+ θ

(λ)
m+2

(
it√
n

)m+2
)
+

+C2
ne

− t2

2

m+4∑
k=8

Θ2,k

(
it√
n

)k
+R0 + r1 + r2 +Rψ3 =
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= e−
t2

2 + C1
nθ

(λ)
m+2

(
it√
n

)m+2

e−
t2

2 + e−
t2

2

2∑
s=1

Csn

m+4s−4∑
k=4s

Θs,k

(
it√
n

)k
+

+R0 + r1 + r2 +Rψ3,m (4.8)

with the order of approximation 1
n2 for m ≥ 4.

In the case m = 4, the expansion (4.8) takes the form

fn = e−
t2

2 + C1
ne

− t2

2

(
θ4

(
it√
n

)4

+ θ
(6,λ)
6

(
it√
n

)6
)
+

+C2
nθ

2
4

(
it√
n

)8

e−
t2

2 +R0 + r1 + r2 +Rψ3,4 , (4.9)

where

|r1| ≤
(
λ̄α6

t6

n2
+
∥∥∥θ(6,λ)8

∥∥∥ t8
n3

)
µn−1

(
t√
n

)
,

|R0| ≤
ζ3

∣∣∣θ(6,λ)6

∣∣∣
2

|t|9

n5/2
µn−1

(
t√
n

)
,

|r2| ≤ ∥Θ2,10∥
|t|10

n4
|t|10 µn−2

(
t√
n

)
,

∣∣∣Rψ3,4∣∣∣ ≤ ζ3 |Θ2,8|
3!

|t|11

n5/2
|µ|n−1

.

The estimate of this asymptotic expansion has only one term of maximum order:

λ̄α6
t6

n2
µn−1

(
t√
n

)
,

while other’s has higher order as n grows.
Hence we have verified the validity of the desired representation (3.1) for m = 4.

The expression (4.9) (as well as (4.4)) was obtained in [11, p. 196].
The asymptotic expansion obtained below is given for the first time. To get

it split Rψ3,m into two parts. The remaining main part of asymptotic expansion
remains unchanged.
4. To complete the proof use induction. It can be seen that it is enough to conduct
an induction for Rψs,m.
We will divide

Rψs,m = ψ · Ss
m+4(s−2)∑
k=4(s−1)

Θs−1,k

(
it√
n

)k
. (4.10)

into two parts using (2.5). So,
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Rψs,m = Ss

m+4(s−2)∑
k=4(s−1)

Θs−1,k

(
it√
n

)k(m+4s−4−k∑
ks=4

θks

(
it√
n

)ks
+ e

t2

2 Rf,m+4s−4−k

)
=

= Ss

m+4(s−2)∑
k=4(s−1)

m+4s−4−k∑
ks=4

Θs−1,kθks

(
it√
n

)k+ks
+

+ e
t2

2 Ss

m+4(s−2)∑
k=4(s−1)

Θs−1,k

(
it√
n

)k
Rf,m+4s−4−k =

= Ss

m+4s−4∑
l=4s

Θs,l

(
it√
n

)l
+ rs .

Note briefly that we used (1.8) and the equality

m+4(s−2)∑
k=4(s−1)

m+4s−4−k∑
ks=4

Θs−1,kθks =

m+4s−4∑
l=4s

Θs,l .

Applying (1.15) and (2.4), we have that

|rs| ≤ Csn

m+4(s−2)∑
k=4(s−1)

|Θs−1,k|
∣∣∣∣ t√n

∣∣∣∣k ∣∣∣∣Rf,m+4s−4−k

(
t√
n

)∣∣∣∣µn−1

(
t√
n

)
≤

≤ ns

s!

m+4∑
k=8

|Θs−1,k|
∣∣∣∣ t√n

∣∣∣∣k ∥∥θ0m+4s−2−k
∥∥ |t|m+4s−2−k

(
√
n)
m+4s−2−k µ

n−1

(
t√
n

)
=

=
1

s!

m+4(s−2)∑
k=4(s−1)

|Θs−1,k|
∥∥θ0m+4s−2−k

∥∥ |t|m+4s−2

(
√
n)
m+2s−2µ

n−1

(
t√
n

)
≤

≤ ∥Θs,m+4s−2∥
|t|m+4s−2

(
√
n)
m+2s−2µ

n−1

(
t√
n

)
,

where

∥Θs,m+4s−2∥ =
1

s!

m+4(s−2)∑
k=4(s−1)

|Θs−1,k|
∥∥θ0m+4s−2−k

∥∥ .
Inserting

Ss = Csng
n + ψ · Ss+1

into

Rψs,m = Ss

m+4s−4∑
l=4s

Θs,l

(
it√
n

)l
+ rs

in light (4.10), we get
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Rψs,m = (Csng
n + ψ · Ss+1)

m+4s−4∑
l=4s

Θs,l

(
it√
n

)l
+ rs =

= Csng
n
m+4s−4∑
l=4s

Θs,l

(
it√
n

)l
+ rs +Rψs+1,m .

This completes the inductive step. It can be seen that the first summand in the
right-hand side of the last inequality forms expansions of characteristic functions
of convolution of distributions, the second summand is contained in the estimate
of the remainder term of the expansion, and the induction step can be applied to
the third summand again.

Then from (1.18) it follows that

∣∣∣Rψm+2
2 ,m

∣∣∣ ≤ ∣∣∣ψ · Sm+2
2

∣∣∣m+4(m+2
2 −2)∑

k=4(m+2
2 −1)

|Θs−1,k|
∣∣∣∣ t√n

∣∣∣∣k ≤

≤ C
m+2

2
n ζ3

3m−4∑
k=2m

|Θs−1,k|
∣∣∣∣ t√n

∣∣∣∣k+3

µn−1 .

The last quantity has order n−m/2−1/2. Therefore, to form the main part of
our expansion, it is enough to perform summation up s to m

2 + 1. The theorem is
proved.
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