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Abstract. In this paper, we prove results on various prime ideals of sem-
inearring, which is a generalization of nearring. We obtain the relationship
among various prime ideals of S-semigroup, which is a module over semin-
earring. In addition, we prove one-one correspondence between the strong
ideals of S-semigroup R and the strong ideals of homomorphic image of R.

1. Introduction

The notion of primeness plays an important role in studying algebraic struc-
tures. Holcombe [5] extended the de�nition of prime rings to nearrings and char-
acterized 0-prime, 1-prime and 2-prime nearrings as three di�erent types of prime
nearrings within the class of all nearrings. Subsequently, Groenewald's [4] intro-
duction of the 3-prime nearring further broadened the scope of the study. No-
tably, these �ndings have substantial implications for studying nearrings and their
properties. Furthermore, Booth et al. [2] presented the idea of equiprime, a gen-
eralization of prime rings to nearrings. Later on, Veldsman [13] presented related
results.

The idea of ν−prime (ν = 3, c, e) ideals was extended to N-groups and related
results were provided by several authors, including Booth et al. [3], Juglal et al.
[6] and Ta³demir et al. [12]. We refer to Pilz [9], Bhavanari, and Kuncham [1] for
the results and isomorphism theorems on nearrings and N-groups.

Koppula et al. [7] de�ned and proved results on the ideal of seminearring and
discussed fundamental properties. Di�erent prime strong ideals of seminearring
and their corresponding prime radicals were described by Koppula et al. [8].
Prakash et al. [10] proved classical isomorphism theorems in S-semigroups. Fur-
ther, di�erent prime strong ideals of S-semigroup and the relationship between
di�erent prime strong ideals of S-semigroup along with suitable examples were
provided by Prakash et al.[11].

This paper discusses some properties of di�erent prime strong ideals of sem-
inearring and their interrelation. Additionally, we obtain results on these strong
ideals by providing the appropriate and adequate conditions. Further, we prove
the one-to-one correspondence between the strong ideal of S-semigroup, a module
over a seminearring, and the strong ideals of it's homomorphic image.
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2. Preliminaries

This section discusses some fundamental de�nitions and �ndings that help in
obtaining the results of the present paper.

De�nition 2.1. [14] A non-empty set S with respect to the binary operations +
and · is said to be a right seminearring if

(1) (S,+) is a semigroup.
(2) There exists 0 ∈ S such that 0 + s = s+ 0 = s, ∀ s ∈ S.
(3) (S, ·) is a semigroup.
(4) For all u, y, e ∈ S, (u+ y)e = ue+ ye.
(5) For all a ∈ S, 0a = 0.

De�nition 2.2. Let T be a nonempty subset of S. For u, v ∈ S, u ≡T v if and
only if there exist l1, l2 ∈ T such that l1 + u = l2 + v.

In the following, we consider S as a right seminearring.

De�nition 2.3. [7] A nonempty subset X of S is said to be a strong ideal of S if
the below mentioned conditions are satis�ed :

(1) For e, f ∈ X, e+ f ∈ X
(2) For s ∈ S, s+X ⊆ X + s
(3) If e ≡X f , then e ∈ X + f, e, f ∈ S
(4) e(X + f) ⊆ X + ef for all e, f ∈ S
(5) Xe ⊆ X for all e ∈ S

De�nition 2.4. [10] Let (S,+, ·) be a seminearring and (R,+) be a semigroup.
Then R is said to be a S-semigroup, if there exists a mapping ∗ : S × R → R
de�ned as ∗(w, κ) → w ∗ κ satis�es the below conditions

(1) (q + v) ∗ κ = q ∗ κ+ v ∗ κ
(2) (q · v) ∗ κ = q ∗ (v ∗ κ)
(3) 0 ∗ κ = 0,

for all κ ∈ R and q, v ∈ S.

In the following, we denote w ∗ κ by wκ.

De�nition 2.5. [10] A non-empty subset T of a S-semigroup R is said to be a
strong ideal of R if the below mentioned conditions are satis�ed.

(1) If e, f ∈ T then e+ f ∈ T .
(2) e+ T ⊆ T + e, ∀ e ∈ R.
(3) For e, f ∈ R, if e ≡T f then e ∈ T + f .
(4) s(T + e) ⊆ T + se ∀ s ∈ S, e ∈ R.

De�nition 2.6. A subset ϕ ̸= M of a semigroup (S,+) is said to be a subsemi-
group, if q, v ∈ M , then q + v ∈ M .

De�nition 2.7. A subsemigroup ∆ of a S-semigroup R is a S-subsemigroup if
S∆ ⊆ ∆ and 0 ∈ ∆.

De�nition 2.8. [10] Let R and R′ be S-semigroups. Then a mapping ϱ : R −→ R′

is said be a S-homomorphism (or S-semigroup homomorphism) if
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(1) ϱ(r1 + r2) = ϱ(r1) + ϱ(r2)
(2) ϱ(sr1) = sϱ(r1), for all s ∈ S, r1, r2 ∈ R.

De�nition 2.9. [10] A S-homomorphism ϱ : R −→ R′ is said to be a strong
S-homomorphism if ϱ(x) = ϱ(y), then x ∈ kerϱ+ y.

De�nition 2.10. [11] Let S be a seminearring, R is any S-semigroup and K is a
strong ideal of R such that SR ⊈ K. Then K is called

(1) 3-prime strong: for a ∈ S, r ∈ R, if aSr ⊆ K, then aR ⊆ K or r ∈ K.
(2) Completely prime (c-prime) strong: for a ∈ S, r ∈ R, if ar ∈ K, then

aR ⊆ K or r ∈ K.
(3) Equiprime (e-prime) strong: for a ∈ S, r1, r2 ∈ R, if asr1 ≡K asr2 for all

s ∈ S, then aR ⊆ K or r1 ≡K r2.
(4) Completely equiprime (c-e-prime) strong: for a ∈ S, r1, r2 ∈ R, if

ar1 ≡K ar2, then aR ⊆ K or r1 ≡K r2.

3. Primeness in Seminearrings and S-semigroups

In this section, we prove 1-1 correspondence between the strong ideals of S-
semigroup R and the strong ideals of S-semigroup R

′
. In addition, we obtain the

results on various prime ideals of S-semigroups.

Theorem 3.1. If π : R −→ R
′
is an onto strong S-homomorphism, then π induces

1-1 correspondence between the strong ideals of R containing Kerπ and the strong
ideals of R

′
.

Proof. Let Q be a strong ideal of R containing Kerπ.
Then we have to show that π(Q) = {π(q) | q ∈ Q} is a strong ideal of R

′
.

Let e, f ∈ π(Q). Then π(e′) = e, π(f ′) = f for some e′, f ′ ∈ Q.
Now, e+ f = π(e′) + π(f ′) = π(e′ + f ′). As e′, f ′ ∈ Q, we have e′ + f ′ ∈ Q.
This implies π(e′ + f ′) ∈ π(Q) =⇒ e+ f ∈ π(Q).

Let s′ ∈ R
′
. Now, take x ∈ s′ + π(Q). Then x = s′ + π(q) for some π(q) ∈ π(Q).

As s′ ∈ R
′
and π is a S-homomorphism, π(s) = s′ for some s ∈ R. Then,

x = s′ + π(q) = π(s) + π(q) = π(s+ q) = π(q′′ + s), for some q′′ ∈ Q.

= π(q′′) + π(s)

∈ π(Q) + s′.

Let u′, v′ ∈ R
′
be such that u′ ≡π(Q) v

′.
Then q′ + u′ = q′′ + v′ for some q′, q′′ ∈ π(Q).
As q′, q′′ ∈ π(Q), we have q′ = π(q1) and q′′ = π(q2) for some q1, q2 ∈ Q.

As u′, v′ ∈ R
′
, π(u) = u′ and π(v) = v′ for some u, v ∈ R.

Now, q′ + u′ = q′′ + v′ implies π(q1) + π(u) = π(q2) + π(v).
This implies π(q1 + u) = π(q2 + v).
As π is strong, we get (q1 + u) ∈ Kerπ + (q2 + v).
Then there exists p1 ∈ Kerπ such that q1 + u = p1 + (q2 + v).
As Kerπ ⊆ Q, we get q1 + u = q3 + v (p1 + q2 = q3 ∈ Q).
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This gives u ≡Q v. This implies u ∈ Q+ v.
Then u = q4 + v for some q4 ∈ Q.
=⇒ π(u) = π(q4 + v) = π(q4) + π(v)
That is, u′ = π(q4) + v′ ∈ π(Q) + v′.

Let s ∈ S and r′ ∈ R
′
. Now, take z ∈ s(π(Q) + r′).

Then z = s(π(q1) + r
′
) for some π(q1) ∈ π(Q) and q1 ∈ Q.

As r′ ∈ R
′
, r′ = π(r) for some r ∈ R. Now,

z = s(π(q1) + π(r)) = s(π(q1 + r)) = π[s(q1 + r)]

= π(q2 + sr), for some q2 ∈ Q.

= π(q2) + π(sr)

= π(q2) + sπ(r)

= π(q2) + sr′ ∈ π(Q) + sr′.

Hence s(π(Q) + r′) ⊆ π(Q) + sr′.

Therefore π(Q) is a strong ideal of R
′
.

Conversely, let J be a strong ideal of R
′
.

Then we show that π−1(J) = {x ∈ R | π(x) ∈ J} is a strong ideal of R.
Let e, f ∈ π−1(J). Then e, f ∈ R and π(e), π(f) ∈ J.

=⇒ π(e) + π(f) ∈ J, because J is a strong ideal of R
′
.

=⇒ π(e+ f) ∈ J
=⇒ e+ f ∈ π−1(J).

Let s ∈ R. Now, take a ∈ s+ π−1(J). Then a = s+ e for some e ∈ π−1(J).
Now, π(a) = π(s+ e) = π(s) + π(e).

As J is a strong ideal of R
′
, π(a) = π(f) + π(s) for some π(f) ∈ J .

=⇒ π(a) = π(f+s) =⇒ a ∈ Kerπ+(f+s) (since π is strong homomorphism).
=⇒ a = p1 + f + s for some p1 ∈ Kerπ.
Now, π(p1 + f) = π(p1) + π(f) = π(0) + π(f) = π(0 + f) = π(f) ∈ J
That is, π(p1 + f) ∈ J and we have p1 + f ∈ R =⇒ p1 + f ∈ π−1(J).
Then a = (p1 + f) + s ∈ π−1(J) + s.
Hence s+ π−1(J) ⊆ π−1(J) + s.
Let e, f ∈ R be such that e ≡π−1(J) f .

Then a+ e = b+ f for some a, b ∈ π−1(J).
a, b ∈ π−1(J) =⇒ π(a), π(b) ∈ J and a, b ∈ R.
Then π(a+ e) = π(b+ f) =⇒ π(a) + π(e) = π(b) + π(f).
=⇒ π(e) ≡J π(f) =⇒ π(e) ∈ J + π(f)
=⇒ π(e) = π(j1) + π(f), for some π(j1) ∈ J and j1 ∈ R

= π(j1 + f)
As π is a strong S-homomorphism, we get e ∈ Kerπ + (j1 + f).
=⇒ e = (p1 + j1) + f for some p1 ∈ Kerπ.
Now, π(p1 + j1) = π(p1) + π(j1) = π(0) + π(j1) = π(0 + j1) = π(j1) ∈ J.
That is, π(p1 + j1) ∈ J and we have p1 + j1 ∈ R =⇒ p1 + j1 ∈ π−1(J).
Then e = (p1 + j1) + f ∈ π−1(J) + f.
Let s ∈ S and r ∈ R. Now, take z ∈ s(π−1(J) + r).
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Then there exists a ∈ π−1(J) such that z = s(a+ r). Now,

π(z) = π(s(a+ r)) = sπ(a+ r) = s(π(a) + π(r)) ∈ J + sπ(r).

This implies π(z) = π(j1) + sπ(r), for some π(j1) ∈ J and j1 ∈ R
= π(j1) + π(sr) = π(j1 + sr).

As π is a strong S-homomorphism, we get z ∈ Kerπ + (j1 + sr).
=⇒ z = p1 + j1 + sr, for some p1 ∈ Kerπ.
Now, π(p1 + j1) = π(p1) + π(j1) = π(0) + π(j1) = π(0 + j1) = π(j1) ∈ J
That is, π(p1 + j1) ∈ J and we have p1 + j1 ∈ R =⇒ p1 + j1 ∈ π−1(J).
Then z = (p1 + j1) + sr ∈ π−1(J) + sr.
Hence s(π−1(J) + r) ⊆ π−1(J) + sr for all s ∈ S, r ∈ R.
Therefore π−1(J) is a strong ideal of R.
Let c ∈ Kerπ. Then π(c) = π(0) ∈ J .
=⇒ c ∈ π−1(J) =⇒ Kerπ ⊆ π−1(J).
Hence π−1(J) is a strong ideal of R containing Kerπ.

Let ℘ be the set of all strong ideals of R containing Kerπ and ℘
′
be the set of all

strong ideals of R
′
. Now, h : ℘ −→ ℘

′
is de�ned as h(P ) = {π(x) | x ∈ P} = π(P ),

for all P ∈ ℘ and σ : ℘
′ −→ ℘ is de�ned as σ(J) = {p ∈ R | π(p) ∈ J} = π−1(J),

for all J ∈ ℘
′
.

Now, (σ ◦ h)(P ) = σ(h(P )) = σ(π(P )) = π−1(π(P )) = (π−1 ◦ π)(P ) = P
Similarly, (h ◦ σ)(P ) = h(σ(P )) = h(π−1(P )) = π(π−1(P )) = (π ◦ π−1)(P ) = P
Therefore (h ◦ σ)(P ) = (σ ◦ h)(P ) = P

This implies h−1 = σ and h, σ are bijective functions.
Thus the one-one correspondence is established.

De�nition 3.1. Let S be a seminearring and K be a strong ideal of S. Then K
is called:

(1) 3-prime strong [8]: for q, b ∈ S, if qSb ⊆ K, then q ∈ K or b ∈ K.
(2) c-prime strong [8]: for q, b ∈ S, if qb ∈ K, then q ∈ K or b ∈ K.
(3) e-prime strong [8]: for q, x, y ∈ S, if qsx ≡K qsy for all s ∈ S, then

q ∈ K or x ≡K y.
(4) c-e-prime strong [11]: for q, x, y ∈ S, if q /∈ K and qx ≡K qy, then

x ≡K y.

Remark 1. If K is a c-prime strong ideal of seminearring S and if xa ≡K ya for
x, y, a ∈ S, then we assume x ≡K y or a ∈ K.
The above condition holds in case of nearrings obviously as follows.
If xa ≡K ya, then xa− ya ∈ K =⇒ (x− y)a ∈ K
=⇒ x− y ∈ K or a ∈ K, since K is c-prime.

De�nition 3.2. A seminearring S is said to be right (respectively, left) permutable
seminearring if qwe = qew (respectively, qwe = wqe) ∀ q, w, e ∈ S.
A seminearring S is said to be permutable seminearring if it is both left and right
permutable.

De�nition 3.3. Sd = {d ∈ S | d(a+ b) = da+ db, ∀ a, b ∈ S}.
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Proposition 3.1. If K is a c-e-prime strong ideal of a zero-symmetric seminear-
ring S, then K is a c-prime strong ideal of S.

Proof. Suppose that K is c-e-prime strong and q, e ∈ S be such that qe ∈ K.
Assume that q /∈ K. Because qe ∈ K, we get qe ≡K 0 =⇒ qe ≡K q0 (q0 = 0 in a
zero-symmetric seminearring).
As K is c-e-prime and q, e ∈ S, we get e ≡K 0 =⇒ e ∈ K.
Thus K is a c-prime strong ideal of S.

De�nition 3.4. A S-semigroup Γ is said to be monogenic if there exists γ ∈ Γ
which satis�es Sγ = Γ, where Sγ = {xγ : x ∈ S}.

Remark 2. [11] Let S be a seminearring and Γ be a S-semigroup and P be a
strong ideal of Γ.
For s, z ∈ S, if zγ ≡P sγ ∀ γ ∈ Γ, then we assume z ≡(P :Γ) s.

If P is a strong ideal of Γ, we denote it as P ◁ Γ.

Proposition 3.2. If S is a zero symmetric seminearring, Γ is a S-semigroup and
P ◁ Γ, then SP ⊆ P .

Proof. As S is zero symmetric, we have s0Γ = 0Γ ∀ s ∈ S.
Because P ◁Γ, we have sp = s(p+0Γ) ∈ P + s0Γ, ∀ s ∈ S, p ∈ P . Hence SP ⊆ P .

De�nition 3.5. Let Q and B be any two subsets of S-semigroup R. Then (Q :
B) = {s ∈ S | sB ⊆ Q}.

Proposition 3.3. If K is a c-prime ideal of S-semigroup R, then (K : R) is a
c-prime ideal of seminearring S.

Proof. Let x, y ∈ S be such that xy ∈ (K : R) and assume that y /∈ (K : R).
Then yR ̸⊆ K, which implies yγ0 /∈ K for some γ0 ∈ R.
We have xy ∈ (K : R), which implies (xy)R ⊆ K =⇒ xyγ0 ∈ K ∀ γ0 ∈ R.
=⇒ x(yγ0) ∈ K.
Since K is c-prime and yγ0 /∈ K, we get xR ⊆ K, which implies x ∈ (K : R).
Thus (K : R) is a c-prime ideal of S.

Proposition 3.4. If S is a permutable zero symmetric seminearring, then K is
a c-prime strong ideal of monogenic S-semigroup R if and only if K is 3-prime
strong.

Proof. Assume that S is permutable and K is 3-prime strong. Let s ∈ S, γ ∈ R
be such that sγ ∈ K.
Then Ssγ ⊆ SK ⊆ K.
Since R is monogenic, Sγ0 = R, for some γ0 ∈ R.
Hence xγ0 = γ, for some x ∈ S, γ ∈ R.
Since S is left permutable, Ssγ = Ssxγ0 = sSxγ0 = sSγ ⊆ K.
Since K is 3-prime strong, either sR ⊆ K or γ ∈ K.
Thus K is c-prime strong.
Converse follows trivially. i.e; K is c-prime strong =⇒ K is 3-prime strong.

Remark 3. Let K be a c-prime strong ideal of S-semigroup R and x1, x2 ∈
S, γ0 ∈ R be such that x1γ0 ≡K x2γ0. Then we assume x1γ ≡K x2γ for all γ ∈ R

 

128



PRIMENESS IN SEMINEARRINGS AND S-SEMIGROUPS

or γ0 ∈ R.
The above condition holds good in nearrings obviously.
Let x1γ0 ≡K x2γ0 =⇒ x1γ0 − x2γ0 ∈ K =⇒ (x1 − x2)γ0 ∈ K.
If K is c-prime, then (x1 − x2)R ⊆ K or γ0 ∈ K.

Proposition 3.5. If S is a permutable seminearring and K is a strong ideal of
monogenic S-semigroup R, then K is an e-prime strong ideal of R if and only if
K is a c-prime strong ideal of R.

Proof. First, we assume that K is c-prime. Let a ∈ S, γ1, γ2 ∈ R be such that
asγ1 ≡K asγ2 ∀s ∈ S. We need to show that either aR ⊆ K or γ1 ≡K γ2.
Since R is monogenic, there exists γ0 ∈ R which satis�es Sγ0 = R.
Then γ1 = xγ0, γ2 = yγ0 for some x, y ∈ S. Let s ∈ S be arbitrarily �xed.
Then, asγ1 ≡K asγ2 =⇒ asxγ0 ≡K asyγ0 =⇒ saxγ0 ≡K sayγ0 (since S is left
permutable).
Since K is c-prime, saxγ ≡K sayγ ∀ γ ∈ R or γ0 ∈ K(by Remark 3).
=⇒ sax ≡(K:R) say, by Remark 2.
For q ∈ S \ (K : R), we get saxq ≡(K:R) sayq
=⇒ sxaq ≡(K:R) syaq, since right permutable.
=⇒ sxa ≡(K:R) sya or q ∈ (K : R), since (K : R) is c-prime.
sxa ≡(K:R) sya =⇒ sx ≡(K:R) sy or a ∈ (K : R), since (K : R) is c-prime.
If a ∈ (K : R), then aR ⊆ K and thus K is equiprime strong ideal of S-semigroup
R.
Suppose otherwise, sx ≡(K:R) sy, then sxq ≡(K:R) syq, since (K : R) is an ideal.
sxq ≡(K:R) syq =⇒ xsq ≡(K:R) ysq, since left permutable.
Since q /∈ (K : R) and (K : R) is c-prime, we have xs ≡(K:R) ys.
Again since (K : R) is c-prime, x ≡(K:R) y or s ∈ (K : R).
If let s ∈ (K : R), then sR ⊆ K, a contradiction to sR ̸⊆ K.
x ≡(K:R) y implies i1 + x = i2 + y, for some i1, i2 ∈ (K : R).
(i1 + x)γ0 = (i2 + y)γ0 =⇒ i1γ0 + xγ0 = i2γ0 + yγ0, by S-semigroup de�nition.
Since i1 ∈ (K : R), then i1γ ∈ K,∀ γ ∈ R =⇒ i1γ0 ∈ K. Similarly i2γ0 ∈ K.
xγ0 ≡K yγ0 =⇒ γ1 ≡K γ2.
Hence K is an equiprime strong ideal of S-semigroup R.
On the other hand, if K is equiprime, then K is 3-prime.
If S is permutable seminearring, then K is c-prime if and only if K is 3-prime, by
Proposition 3.4.
This implies K is equiprime. Then K is c-prime ideal of S-semigroup.

Proposition 3.6. If K is an equiprime strong ideal of S-semigroup R, then (K :
R) is an equiprime strong ideal of S.

Proof. Let K be an e-prime strong ideal of R and let a, x, y ∈ S be such that
asx ≡(K:R) asy ∀ s ∈ S. Now, �x s ∈ S arbitrarily. Then there exist i1, i2 ∈ (K :
R) such that i1 + asx = i2 + asy.
Let γ ∈ R. Then (i1 + asx)γ = (i2 + asy)γ. This implies i1γ + asxγ = i2γ + asyγ.
Then asxγ ≡K asyγ.
Let γ ∈ R be �xed. Then xγ = γ1, yγ = γ2
This gives asγ1 ≡K asγ2
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As s ∈ S is arbitrary, we get asγ1 ≡K asγ2 ∀ s ∈ S
Since K is e-prime strong, either aR ⊆ K or γ1 ≡K γ2.
If aR ⊆ K, then a ∈ (K : R) and thus (K : R) is e-prime strong.
If γ1 ≡K γ2, then xγ ≡K yγ.
As γ is arbitrarily �xed, xγ ≡K yγ ∀ γ ∈ R =⇒ x ≡(K:R) y, by Remark 2.
This implies (K : R) is an e-prime strong ideal of S.

Proposition 3.7. Let S be a right permutable seminearring, R be a monogenic
S-semigroup and K be a strong ideal of R such that SR ̸⊆ K. If (K : R) is an
e-prime strong ideal of S, then K is an e-prime strong ideal of R.

Proof. Suppose that (K : R) is an e-prime strong ideal of S and a ∈ S, γ1, γ2 ∈
R and asγ1 ≡K asγ2 ∀ s ∈ S.
We need to show that aR ⊆ K or γ1 ≡K γ2.
Suppose aR ̸⊆ K and γ1 ̸≡K γ2. If aR ̸⊆ K, then a /∈ (K : R).
Nevertheless, because R is monogenic, there exists γ0 ∈ R such that Sγ0 = R.
Hence γ1 = xγ0 and γ2 = yγ0 for some x, y ∈ S.
If γ1 ̸≡K γ2, then xγ0 ̸≡K yγ0 =⇒ x ̸≡(K:R) y.
Since (K : R) is equiprime strong and a /∈ (K : R), x ̸≡(K:R) y.
There exists m ∈ S such that amx ̸≡(K:R) amy =⇒ amx ̸≡(K:Sγ0) amy.
Then amxs′γ0 ̸≡K amys′γ0 for some s′ ∈ S.
=⇒ ams′xγ0 ̸≡K ams′yγ0. (since right permutable)
=⇒ ams′γ1 ̸≡K ams′γ2.
Hence there exists ms′ ∈ S such that a(ms′)γ1 ̸≡K a(ms′)γ2.
A contradiction to our assumption asγ1 ≡K asγ2 ∀ s ∈ S.
Hence aR ⊆ K or γ1 ≡K γ2.
Therefore K is an e-prime strong ideal of R.

Proposition 3.8. If K is a strong ideal of S-semigroup R, then (K : R) is a
strong ideal of S.

Proof. Let a, b ∈ (K : R). Then by de�nition of (K : R) we get aR ⊆ K, bR ⊆ K.
This implies aγ, bγ ∈ K ∀ γ ∈ R.
Then aγ + bγ ∈ K ∀ γ ∈ R (since K is an ideal)
=⇒ (a+ b)γ ∈ K ∀ γ ∈ R
=⇒ a+ b ∈ (K : R).
Take z ∈ s+ (K : R). Then z = s+ a for some a ∈ (K : R).
Since a ∈ (K : R), we have aR ⊆ K =⇒ aγ ∈ K ∀ γ ∈ R
Let γ ∈ R be �xed. Then zγ = (s+ a)γ = sγ + aγ = sγ + p1 for some p1 ∈ K.
0 + zγ = p2 + sγ (since K is an ideal).
=⇒ zγ ≡K sγ =⇒ z ≡(K:R) s =⇒ z ∈ (K : R) + s.
Let s1 ≡(K:R) s2. Then a1 + s1 = a2 + s2 for some a1, a2 ∈ (K : R).
Now, take γ ∈ R. Then (a1 + s1)γ = (a2 + s2)γ
=⇒ a1γ + s1γ = a2γ + s2γ.
Since a1γ, a2γ ∈ K, we get s1γ ≡K s2γ
As γ ∈ R is arbitrary, we have s1γ ≡K s2γ, ∀ γ ∈ R.
This implies s1 ≡(K:R) s2. Hence s1+ ∈ (K : R) + s2.
Let s, s′ ∈ S be such that z ∈ s((p : R) + s′).
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=⇒ z = s(a+ s′) for some a ∈ (K : R).
Let γ ∈ R. Then zγ = s(a + s′)γ = s(aγ + s′γ) = s(p1 + s′γ) ⊆ K + ss′γ (left
ideal of K).
Hence zγ = p2 + (ss′)γ =⇒ zγ ≡K (ss′)γ =⇒ z ≡(K:R) ss′ =⇒ z ∈ (K :
R) + ss′.
Let z ∈ (K : R)S. Then z = as for some a ∈ (K : R).
Now, take γ ∈ R. Then zγ = asγ = a(sγ) = aγ1 (γ1 ∈ R)
Since a ∈ (K : R) =⇒ aγ ∈ K ∀ γ ∈ R.
=⇒ zγ = aγ1 ∈ K =⇒ z ∈ (K : R).
Therefore (K : R) is a strong ideal of the seminearring S.

Proposition 3.9. If K is a c-prime strong ideal of R then (K : R) is a c-prime
strong ideal of S.

Proof. First, we assume that K is a c-prime strong ideal of R. That is, for
a ∈ S, γ ∈ R if aγ ∈ K then aR ⊆ K or γ ∈ K.
Let x, y ∈ S be such that xy ∈ (K : R). Suppose y ∈ (K : R), then we are done.
If y /∈ (K : R) then yR ̸⊆ K. This implies yγ /∈ K for some γ ∈ R.
xy ∈ (K : R) =⇒ xyR ⊆ K =⇒ xyγ ∈ K, ∀ γ ∈ R
=⇒ x(yγ) ∈ K ∀ γ ∈ R
Since K is c-prime strong and yγ /∈ K =⇒ xR ⊆ K =⇒ x ∈ (K : R).
Hence (K : R) is a c-prime strong ideal of S.

Proposition 3.10. If S is a right permutable seminearring, R is a monogenic
S-semigroup and K is a strong ideal of R such that SR ̸⊆ K and Sd \ (K : R) ̸= ∅
then K is c-e-prime strong if and only if K is c-prime strong.

Proof. Suppose K is a c-prime strong ideal of S-semigroup R. Let a ∈ S, γ1, γ2 ∈
R be such that aγ1 ≡K aγ2.
Then we have to show that aR ⊆ K or γ1 ≡K γ2.
Since R is monogenic, there exists γ0 ∈ R such that Sγ0 = R. This implies
γ1 = xγ0, γ2 = yγ0 for some x, y ∈ S.
Then axγ0 ≡K ayγ0.
Since K is c-prime strong, ax ≡(K:R) ay or γ0 ∈ K.
If γ0 ∈ K, then R = Sγ0 ⊆ SK ⊆ K, a contradiction to SR ̸⊆ K.
So ax ≡(K:R) ay. Since (K : R) is an ideal of S, we get sdax ≡(K:R) sday for some
sd ∈ Sd \ (K : R).
=⇒ sdxa ≡(K:R) sdya. (since S is right permutable).
By Proposition 3.9, we get xa ≡(K:R) ya (since sd /∈ (K : R))
=⇒ x ≡(K:R) y or a ∈ (K : R).
If x ≡(K:R) y, then xγ0 ≡K yγ0. This implies γ1 ≡K γ2 and we are done.
If a ∈ (K : R), then aR ⊆ K.
Thus K is c-e-prime strong.
Other way implication trivially holds. ie, K is c-e-prime strong =⇒ K is c-prime.

Proposition 3.11. If S is a right permutable seminearring, R is a monogenic S-
semigroup and K is a strong ideal of R together with SR ̸⊆ K, then K is e-prime
strong if and only if K is c-e-prime strong.

131



P. PADOOR, B. S. KEDUKODI, S. P. KUNCHAM AND K. KOPPULA

Proof. Suppose that K is e-prime strong ideal of S-semigroup R.
Let a ∈ S, γ1, γ2 ∈ R be such that aγ1 ≡K aγ2.
Then to prove K is c-e-prime, we need to show that either aR ⊆ K or γ1 ≡K γ2.
Suppose aR ̸⊆ K and γ1 ̸≡K γ2.
As R is monogenic, Sγ0 = R for γ0 ∈ R \K.
(If γ0 ∈ K, then R = Sγ0 ⊆ SK ⊆ K =⇒ R = K, a contradiction to SR ̸⊆ K.)
Then γ1 = xγ0, γ2 = yγ0 for some x, y ∈ S.
If γ1 ̸≡K γ2, then xγ0 ̸≡K yγ0 =⇒ x ̸≡(K:R) y.
If K is e-prime strong ideal of S, then (K : R) is e-prime strong ideal of S.
aR ̸⊆ K =⇒ a /∈ (K : R) and we have x ̸≡(K:R) y. This implies amx ̸≡(K:R) amy
for some m ∈ S.
=⇒ axm ̸≡(K:R) aym (since S is right permutable).
Since (K : R) is a strong ideal of S, ax ̸≡(K:R) ay
=⇒ axγ0 ̸≡K ayγ0 =⇒ aγ1 ̸≡K aγ2, a contradiction to our assumption.
Hence aR ⊆ K or γ1 ≡K γ2. Thus K is c-e-prime strong.
Converse follows trivially.
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