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PRIMENESS IN SEMINEARRINGS AND S-SEMIGROUPS

PRAKASH PADOOR, BABUSHRI SRINIVAS KEDUKODI, SYAM PRASAD KUNCHAM
AND KAVITHA KOPPULA¥*

ABsTrACT. In this paper, we prove results on various prime ideals of sem-
inearring, which is a generalization of nearring. We obtain the relationship
among various prime ideals of S-semigroup, which is a module over semin-
earring. In addition, we prove one-one correspondence between the strong
ideals of S-semigroup R and the strong ideals of homomorphic image of R.

1. Introduction

The notion of primeness plays an important role in studying algebraic struc-
tures. Holcombe [5] extended the definition of prime rings to nearrings and char-
acterized O-prime, 1-prime and 2-prime nearrings as three different types of prime
nearrings within the class of all nearrings. Subsequently, Groenewald’s [4] intro-
duction of the 3-prime nearring further broadened the scope of the study. No-
tably, these findings have substantial implications for studying nearrings and their
properties. Furthermore, Booth et al. [2] presented the idea of equiprime, a gen-
eralization of prime rings to nearrings. Later on, Veldsman [13] presented related
results.

The idea of v—prime (v = 3, ¢, e) ideals was extended to N-groups and related
results were provided by several authors, including Booth et al. [3], Juglal et al.
[6] and Tagdemir et al. [12]. We refer to Pilz [9], Bhavanari, and Kuncham [1] for
the results and isomorphism theorems on nearrings and N-groups.

Koppula et al. [7] defined and proved results on the ideal of seminearring and
discussed fundamental properties. Different prime strong ideals of seminearring
and their corresponding prime radicals were described by Koppula et al. [8].
Prakash et al. [10] proved classical isomorphism theorems in S-semigroups. Fur-
ther, different prime strong ideals of S-semigroup and the relationship between
different prime strong ideals of S-semigroup along with suitable examples were
provided by Prakash et al.[11].

This paper discusses some properties of different prime strong ideals of sem-
inearring and their interrelation. Additionally, we obtain results on these strong
ideals by providing the appropriate and adequate conditions. Further, we prove
the one-to-one correspondence between the strong ideal of S-semigroup, a module
over a seminearring, and the strong ideals of it’s homomorphic image.
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2. Preliminaries

This section discusses some fundamental definitions and findings that help in
obtaining the results of the present paper.

Definition 2.1. [14] A non-empty set S with respect to the binary operations +
and - is said to be a right seminearring if

(1) (S,+) is a semigroup.

(2) There exists 0 € Ssuch that 0 +s=s+0=3s, Vs S.

(3) (S,-) is a semigroup.

(4) For all u,y,e € S, (u+y)e =ue+ ye.

(5) For all a € S,0a = 0.

Definition 2.2. Let T be a nonempty subset of S. For u,v € S, u =7 v if and
only if there exist [y,ly € T such that [y +u =I5 + v.

In the following, we consider S as a right seminearring.

Definition 2.3. [7] A nonempty subset X of S is said to be a strong ideal of S if
the below mentioned conditions are satisfied :

(1) Fore,fe X,e+ fe X

(2) Forse S,s+ X CX+s

(3) fe=x f,thenec X+ f, e, f €S

(4) e(X+f)CX+efforale fes

(5) XeC X forallee S

Definition 2.4. [10] Let (S, +,-) be a seminearring and (R, +) be a semigroup.
Then R is said to be a S-semigroup, if there exists a mapping * : S X R — R
defined as *(w, k) — w * k satisfies the below conditions

(1) (g+v)*k=qxrk+v*K

(2) (g-v)*k=qx*(V*K)

(3) 0xk =0,
for all Kk € R and ¢,v € S.

In the following, we denote w * k by wk.

Definition 2.5. [10] A non-empty subset T" of a S-semigroup R is said to be a
strong ideal of R if the below mentioned conditions are satisfied.

(1) Ife,f €T then e+ feT.

(2) e+TCT+e, VeeR.

(3) Fore,f € R,ife=p ftheneec T+ f.

(4) s(T+e)CT+se VseS, eeR.

Definition 2.6. A subset ¢ # M of a semigroup (5, +) is said to be a subsemi-
group, if g,v € M, then g+ v € M.

Definition 2.7. A subsemigroup A of a S-semigroup R is a S-subsemigroup if
SA CAand0 € A.

Definition 2.8. [10] Let R and R’ be S-semigroups. Then a mapping o: R — R’
is said be a S-homomorphism (or S-semigroup homomorphism) if
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(1) o(r1+72) = o(r1) + o(r2)
(2) o(sr1) =spo(r1), forallse S, ri,ry € R.

Definition 2.9. [10] A S-homomorphism p : R — R’ is said to be a strong
S-homomorphism if o(x) = o(y), then = € kero + y.

Definition 2.10. [11] Let S be a seminearring, R is any S-semigroup and K is a
strong ideal of R such that SR ¢ K. Then K is called
(1) 3-prime strong: for a € S;r € R, if aSr C K, then aRC K or r € K.
(2) Completely prime (c-prime) strong: for a € S,r € R, if ar € K, then
aRCKorrekK.
(3) Equiprime (e-prime) strong: for a € S,r1,72 € R, if asry =k asrs for all
s €S, then aR C K or ry =g 79.
(4) Completely equiprime (c-e-prime) strong: for a € S, ri,r5 € R, if
ary =k arg, then aR C K or r{ =g 9.

3. Primeness in Seminearrings and S-semigroups

In this section, we prove 1-1 correspondence between the strong ideals of S-
semigroup R and the strong ideals of S-semigroup R . In addition, we obtain the
results on various prime ideals of S-semigroups.

Theorem 3.1. If 7 : R —» R’ is an onto strong S-homomorphism, then 7 induces
1-1 correspondence between the strong ideals of R containing Kernm and the strong
ideals of R .

Proof. Let @ be a strong ideal of R containing Kerm.
Then we have to show that 7(Q) = {7 (q) | ¢ € Q} is a strong ideal of R’.

Let e, f € m(Q). Then w(e’) = e, w(f’') = f for some €', f' € Q.
Now, e+ f=x(e/) +n(f')=n(e + f'). As ¢/, f' € Q, we have e/ + f' € Q.
This implies w(e + f') € 7(Q) = e+ f € 7(Q).

Let s € R'. Now, take z € s’ + 7(Q). Then z = s’ 4 n(q) for some 7(q) € 7(Q).
As ¢’ € R and 7 is a S-homomorphism, 7(s) = ¢’ for some s € R. Then,

z=5+m(q) =n(s)+m(q) =m(s+q) =m(¢" +s), for some ¢" € Q.
=(q") +7(s)
em(Q)+ 5.

Let u/,v" € R’ be such that v’ =) V.

Then ¢ + v = ¢"” + v’ for some ¢',¢" € 7(Q).

As ¢, ¢" € 7(Q), we have ¢’ = 7(q1) and ¢” = 7(gz) for some ¢1,¢2 € Q.
As u/,v' € R, w(u) = v/ and 7(v) = v’ for some u,v € R.

Now, ¢’ +u' = ¢ + v’ implies 7(q1) + 7(u) = 7(q2) + 7(v).

This implies 7(q1 + u) = 7(g2 + v).

As 7 is strong, we get (¢1 + u) € Kerm + (g2 + v).

Then there exists p; € Kern such that ¢; +u = p1 + (g2 + v).

As Kerm CQ,weget g1 +u=¢qs+v (p1+¢ =g3 €Q).
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This gives u =¢ v. This implies v € Q + v.
Then u = g4 + v for some ¢4 € Q.

— () = m(gs +v) = 7la1) + 7(v)

That is, v’ = w(qs) +v' € 7(Q) + v'.

Let s € S and 7 € R'. Now, take z € s(n(Q) + ).
Then z = s(n(qy) + 1) for some 7(qy) € 7(Q) and ¢; € Q.
As+’ € R, ' = n(r) for some r € R. Now,

m[s(q1 +1)]

7(ga + sr),for some g2 € Q.
q2) + m(sr)

q2) + sm(r)

q) + s’ € m(Q) + sr'.

z=s(m(q1) +7(r)) = s(mw(q1 + 7))

(
(
(
(

™
s
s

Hence s(7(Q) + ') C 7(Q) + sr'.

Therefore 7(Q) is a strong ideal of R’ .

Conversely, let J be a strong ideal of R.

Then we show that 771(J) = {z € R | m(z) € J} is a strong ideal of R.
Let e, f € 7= 1(J). Then e, f € R and w(e), 7(f) € J.

— n(e) +7(f) € J, because J is a strong ideal of R’

= w(e+f)eJ

= e+ fen(J).

Let s € R. Now, take a € s + 7 1(.J). Then a = s + e for some e € 7~ 1(.J).
Now, 7(a) = 7(s +e) = w(s) + 7 (e).
As J is a strong ideal of R, 7(a) = n(f) + n(s) for some 7 (f) € J.
= w(a) =7(f+s) = a€ Kerr+(f+s) (since 7 is strong homomorphism).
= a=p; + f+s for some p; € Kern.
Now, 7(p1 + f) = 7(p1) + (f) = 7(0) + 7(f) = 7(0+ f) = =(f) € J
That is, 7(py + f) € J and we have p; + f € R = p1 + f € 7 1(J).
Then a = (p1 + f) +sen1(J) +s.
Hence s + 7~ 1(J) C 77 1(J) + s.
Let e, f € R be such that e =;-1(;) f.
Then a + e = b+ f for some a,b € 7 1(J).
a,ben (J) = n(a),n(b) € J and a,b € R.
Then w(a+e) =nw(b+ f) = 7(a) +7(e) =7w(b) +7(f).
— 1(e) =y 1(f) = () €+ n(f)
= w(e) =w(j1) +7(f), for some 7w(j;) € J and j; € R
=71+ f)
As 7 is a strong S-homomorphism, we get e € Kerm + (j1 + f).
= e=(p1+j1)+ f for some p; € Kerm.
Now, 7(p1 +j1) = m(p1) + 7(j1) = m(0) + 7(j1) = 7(0 + j1) = 7(j1) € J.
That is, m(p1 + j1) € J and we have p; +j; € R = p1 +j1 € 7 *(J).
Then e = (p1 +j1) + f e ' (J) + [.
Let s € S and r € R. Now, take z € s(7~1(J) + 7).
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Then there exists a € 7~1(J) such that z = s(a + ). Now,
w(z) =w(s(a+r)) =sm(a+7r)=s(n(a) +7(r)) € J+ su(r).

This implies 7(2) = 7(j1) + s7(r), for some 7w (j;) € J and j; € R
= (1) +7(sr) = 7w(jr + sr).
As 7 is a strong S-homomorphism, we get z € Kern + (j1 + sr).
= 2z =p; + j1 + sr, for some p; € Kern.
Now, m(p1 +j1) = (p1) + 7(j1) = 7(0) + 7(j1) = (0 +j1) = 7(jr) € J
That is, m(p1 + j1) € J and we have p; +j; € R = p1 +j1 € 7 *(J).
Then z = (p1 + j1) + sr € 7 1(J) + sr.
Hence s(m=1(J) +7r) Ca 1(J)+srforal se S, reR.
Therefore 771(J) is a strong ideal of R.
Let ¢ € Kerw. Then w(c) = 7(0) € J.
= cen 1(J) = Kerr Crn 1(J).
Hence 7~1(J) is a strong ideal of R containing Kermn.
Let p be the set of all strong ideals of R containing Kernw and p/ be the set of all
strong ideals of R". Now, h: p —» g is defined as h(P) = {r(z) | z € P} = n(P),
forall Pepand o:p —s pis defined as o(J)={pe R |n(p) € J} = 1(J),
for all J € .
Now, (7.0 h)(P) = o(h(P)) = o(r(P)) = 7} (x(P)) = (x~' o m)(P) = P
Similaly, (h o 7)(P) = h(o(P)) = h(x~"(P)) = n(x~(P)) = (ro 7w })(P) = P
Therefore (hoo)(P)=(coh)(P)=P
This implies h~! = ¢ and h, o are bijective functions.
Thus the one-one correspondence is established.

Definition 3.1. Let S be a seminearring and K be a strong ideal of S. Then K
is called:

(1) 3-prime strong [8]: for ¢,b € S, if ¢Sb C K, then g € K or b € K.

(2) c-prime strong [8]: for ¢,b € S, if gb € K, then g€ K or b € K.

(3) e-prime strong [8]: for ¢,z,y € S, if gsx =k gsy for all s € S, then
g€ Korz=guy.

(4) c-e-prime strong [11]: for ¢,z,y € S, if ¢ ¢ K and qv =k qy, then

Remark 1. If K is a c-prime strong ideal of seminearring S and if za =k ya for
x,y,a € S, then we assume z =k y or a € K.

The above condition holds in case of nearrings obviously as follows.

If va =k ya, then za —ya € K = (z—y)a€ K

— x—y € K orace€ K, since K is c-prime.

Definition 3.2. A seminearring S is said to be right (respectively, left) permutable
seminearring if qwe = gew (respectively, qwe = wqe) V q,w,e € S.

A seminearring S is said to be permutable seminearring if it is both left and right
permutable.

Definition 3.3. Sg={de€ S| d(a+b) =da+db, ¥ a,be S}.
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Proposition 3.1. If K is a c-e-prime strong ideal of a zero-symmetric seminear-
ring S, then K is a c-prime strong ideal of S.

Proof. Suppose that K is c-e-prime strong and ¢,e € .S be such that ge € K.
Assume that ¢ ¢ K. Because ge € K, we get g¢e =g 0 = ge =k q0 (g0 =01in a
zero-symmetric seminearring).

As K is c-e-prime and q,e € S, we get e = 0 = e € K.

Thus K is a c-prime strong ideal of S.

Definition 3.4. A S-semigroup I' is said to be monogenic if there exists v € I’
which satisfies Sy =T, where Sy = {zvy: 2z € S}.

Remark 2. [11] Let S be a seminearring and I" be a S-semigroup and P be a
strong ideal of T'.
For s,z € §,if 2y =p sy Vv € T, then we assume z =(p.) s.

If P is a strong ideal of I', we denote it as P < T.

Proposition 3.2. If S is a zero symmetric seminearring, I" is a S-semigroup and
P <T, then SP C P.

Proof. As S is zero symmetric, we have sOp = 0p V s € S.
Because P <T', we have sp = s(p+0r) € P+s0r,V s € S,p € P. Hence SP C P.

Definition 3.5. Let Q and B be any two subsets of S-semigroup R. Then (Q :
B)={se S|sBCQ}.

Proposition 3.3. If K is a c-prime ideal of S-semigroup R, then (K : R) is a
c-prime ideal of seminearring S.

Proof. Let x,y € S be such that xzy € (K : R) and assume that y ¢ (K : R).
Then yR ¢ K, which implies yvy ¢ K for some 7y € R.

We have zy € (K : R), which implies (zy)RC K = zyyo€ K Vv € R.
= z(yy) € K.

Since K is c-prime and y7y ¢ K, we get xR C K, which implies = € (K : R).
Thus (K : R) is a c-prime ideal of S.

Proposition 3.4. If S is a permutable zero symmetric seminearring, then K is
a c-prime strong ideal of monogenic S-semigroup R if and only if K is 3-prime
strong.

Proof. Assume that S is permutable and K is 3-prime strong. Let s € S,v € R
be such that sy € K.

Then Ssy C SK C K.

Since R is monogenic, Syg = R, for some vy € R.

Hence zy9 = 7, for some x € S, v € R.

Since S is left permutable, Ssy = Sszyy = sSxyy = sSv C K.

Since K is 3-prime strong, either sR C K or v € K.

Thus K is c-prime strong.

Converse follows trivially. i.e; K is c-prime strong = K is 3-prime strong.

Remark 3. Let K be a c-prime strong ideal of S-semigroup R and zi,x5 €
S, € R be such that 179 =g 227. Then we assume z1y =g a9y for all vy € R
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or v € R.

The above condition holds good in nearrings obviously.

Let 170 =k 270 = x170 — 2270 € K = (21 — x2)7 € K.
If K is c-prime, then (z; —29)R C K or 79 € K.

Proposition 3.5. If S is a permutable seminearring and K is a strong ideal of
monogenic S-semigroup R, then K is an e-prime strong ideal of R if and only if
K is a c-prime strong ideal of R.

Proof. First, we assume that K is c-prime. Let a € S, 71,72 € R be such that
asy1 =k asvys Vs € S. We need to show that either aR C K or v =g 7».

Since R is monogenic, there exists 79 € R which satisfies Svyy = R.

Then v = 270, 2 = Y7o for some z,y € S. Let s € S be arbitrarily fixed.

Then, asy1 =k asy2 = asxyo =k asyyo —> saxryy =k sayyo (since S is left
permutable).

Since K is c-prime, saxy =k sayy ¥V v € R or 79 € K(by Remark 3).

= saxr =(g.R) say, by Remark 2.

For g € S\ (K : R), we get saxq =(x.r) sayq

= sraq =(k:R) Syaq, since right permutable.

= sra =(g.p) sya or q¢€ (K :R),since (K : R) is c-prime.

5Ta =(g.R) SYa = ST =(k:r) sy or a € (K : R), since (K : R) is c-prime.

If a € (K : R), then aR C K and thus K is equiprime strong ideal of S-semigroup
R.

Suppose otherwise, s =(x.r) sy, then sxq =(k.r) syq, since (K : R) is an ideal.
5Tq =(k:R) SYq = TSq =(k:R) Y5q, since left permutable.

Since ¢ ¢ (K : R) and (K : R) is c-prime, we have x5 =(x.p) ys.

Again since (K : R) is c-prime, z =(g.p) y or s € (K : R).

Iflet s € (K : R), then sR C K, a contradiction to sR € K.

T =(k.r) y implies i1 + x = iy + y, for some 1,43 € (K : R).

(i1 + )70 = (i2 + y)y = @17 + 2Y = @270 + Y0, by S-semigroup definition.
Since i1 € (K : R), then 17 € K,V v € R = i1y € K. Similarly isy € K.
Ty =K YYo = V1 =K 72-

Hence K is an equiprime strong ideal of S-semigroup R.

On the other hand, if K is equiprime, then K is 3-prime.

If S is permutable seminearring, then K is c-prime if and only if K is 3-prime, by
Proposition 3.4.

This implies K is equiprime. Then K is c-prime ideal of S-semigroup.

Proposition 3.6. If K is an equiprime strong ideal of S-semigroup R, then (K :
R) is an equiprime strong ideal of S.

Proof. Let K be an e-prime strong ideal of R and let a,z,y € S be such that
asr =k.g) asy ¥V s € S. Now, fix s € S arbitrarily. Then there exist 41,4y € (K :
R) such that i1 + asz = i3 + asy.

Let v € R. Then (i1 + asx)y = (i2 + asy)y. This implies i1y + asxy = iy + asyy.
Then aszy =k asy~y.

Let v € R be fixed. Then zvy = v1,yy = 72

This gives asy; =x asys
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As s € S is arbitrary, we get asy; =k asy2 Vs € S

Since K is e-prime strong, either aR C K or v; =g 7s.

If aR C K, then a € (K : R) and thus (K : R) is e-prime strong.

If 71 =k 72, then zv =k y7.

As v is arbitrarily fixed, v =x yy Vv € R = x =(k.r) ¥, by Remark 2.
This implies (K : R) is an e-prime strong ideal of S.

Proposition 3.7. Let S be a right permutable seminearring, R be a monogenic
S-semigroup and K be a strong ideal of R such that SR ¢ K. If (K : R) is an
e-prime strong ideal of S, then K is an e-prime strong ideal of R.

Proof. Suppose that (K : R) is an e-prime strong ideal of S and a € S, 71,72 €
R and asy; =g asy, Vs € S.

We need to show that aR C K or v =k 7».

Suppose aR € K and 71 Zk 2. If aR € K, then a ¢ (K : R).

Nevertheless, because R is monogenic, there exists 79 € R such that Sy = R.
Hence 71 = a7y and v = yyo for some x,y € S.

If v1 £k 72, then 270 Zx Y70 = T Z(k:R) Y-

Since (K : R) is equiprime strong and a ¢ (K : R), * Z(k.r) V-

There exists m € S such that amz Zk.r) amy = amz Z(k.5+,) aMy.
Then amaxs’'vo Zx amys’yo for some s' € S.

= ams'zyg Zx ams'yy. (since right permutable)

= ams’'y £x ams'vys.

Hence there exists ms’ € S such that a(ms’)y1 Zx a(ms’)y,.

A contradiction to our assumption asy; =g asys ¥V s € S.

Hence aR C K or 71 =g 7o.

Therefore K is an e-prime strong ideal of R.

Proposition 3.8. If K is a strong ideal of S-semigroup R, then (K : R) is a
strong ideal of S.

Proof. Let a,b € (K : R). Then by definition of (K : R) we get aR C K, bR C K.
This implies ay,by e K Vv € R.

Then ay+ by € K Vv € R (since K is an ideal)

= (a+b)ye KV~yER

= a+be(K:R).

Take z € s+ (K : R). Then z = s+ a for some a € (K : R).

Since a € (K : R), wehave aRC K = ay€ KVy€R

Let v € R be fixed. Then zy = (s 4+ a)y = sy + ay = sy + p; for some p; € K.
0+ 2y =ps + sy (since K is an ideal).

= 2y=K 87 = 2=k:Rr) 5 = 2€ (K:R)+s.

Let s1 =(x:r) 52. Then a; + s1 = az + so for some a1,a2 € (K : R).

Now, take v € R. Then (a1 + 1)y = (a2 + s2)v

= a1y + S17y = a7y + S27.

Since a1, a2y € K, we get s17 =k S27y

As v € R is arbitrary, we have sy =g s27, Vv € R.

This implies 51 =(x.g) s2. Hence 51+ € (K : R) + s3.

Let s,s" € S be such that z € s((p: R) + §').
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= z=s(a+ ') for some a € (K : R).

Let v € R. Then zy = s(a+ ¢')y = s(ay + s'y) = s(p1 + s'y) C K + ss’y (left
ideal of K).

Hence zy = py + (s8')y = 27 =k (s8')y = 2 =xwp) s8¢ = z€ (K:
R) + ss'.

Let z € (K : R)S. Then z = as for some a € (K : R).

Now, take v € R. Then zy = asy =a(sy) =ay1 (71 € R)

Sincea€ (K:R) = aye KV~vy€R.

= zy=ay1 € K = z¢€ (K :R).

Therefore (K : R) is a strong ideal of the seminearring S.

Proposition 3.9. If K is a c-prime strong ideal of R then (K : R) is a c-prime
strong ideal of S.

Proof. First, we assume that K is a c-prime strong ideal of R. That is, for
aeS,yeRifaye KthenaRC K or v € K.

Let 2,y € S be such that zy € (K : R). Suppose y € (K : R), then we are done.
If y ¢ (K : R) then yR ¢ K. This implies yy ¢ K for some v € R.

zy€ (K:R) = 2yRC K — zyye K,Vv€R

= z(yy) e KVYER

Since K is c-prime strong and yy ¢ K — zRC K — z € (K:R).

Hence (K : R) is a c-prime strong ideal of S.

Proposition 3.10. If S is a right permutable seminearring, R is a monogenic
S-semigroup and K is a strong ideal of R such that SR ¢ K and Sy \ (K : R) # 0
then K is c-e-prime strong if and only if K is c-prime strong.

Proof. Suppose K is a c-prime strong ideal of S-semigroup R. Let a € S,7v1,72 €
R be such that avy; =g avye.

Then we have to show that aR C K or 71 =g 2.

Since R is monogenic, there exists 79 € R such that Svy = R. This implies
Y1 = TY0, Y2 = Y7o for some x,y € S.

Then axyo =k ayyo-

Since K is c-prime strong, ax =(x.g) ay or v € K.

If v € K, then R = Svy C SK C K, a contradiction to SR ¢ K.

So axr =(k.p) ay. Since (K : R) is an ideal of S, we get sqax =(x.r) sqay for some
SdESd\(K:R).

= 5470 =(k:R) Sqaya. (since S is right permutable).

By Proposition 3.9, we get xza =k.r) ya (since sq ¢ (K : R))

= =g yorac (K:R).

If  =k.r) ¥, then 279 =k y70. This implies 71 =g 72 and we are done.

If a € (K:R), then aR C K.

Thus K is c-e-prime strong.

Other way implication trivially holds. ie, K is c-e-prime strong = K is c-prime.

Proposition 3.11. If S is a right permutable seminearring, R is a monogenic S-
semigroup and K is a strong ideal of R together with SR ¢ K, then K is e-prime
strong if and only if K is c-e-prime strong.
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Proof. Suppose that K is e-prime strong ideal of S-semigroup R.

Let a € S,v1,72 € R be such that avy; =g ave.

Then to prove K is c-e-prime, we need to show that either aR C K or 71 =g 7.
Suppose aR € K and v, i 7o-

As R is monogenic, Syo = R for v € R\ K.

(If v € K, then R=Sv CSK C K =— R = K, a contradiction to SR € K.)
Then vy = 279,72 = Yo for some z,y € S.

If 1 #K 72, then 270 Zx yY0 = @ Z(k:R) Y-

If K is e-prime strong ideal of S, then (K : R) is e-prime strong ideal of S.
aRZ K = a ¢ (K : R)and we have x #k.r) y. This implies amz #x.r) amy
for some m € S.

= axm #(x:r) aym (since S is right permutable).

Since (K : R) is a strong ideal of S, ax #(x.r) ay

= axyy Zx Yo —> a1 ZK a7, a contradiction to our assumption.

Hence aR C K or 71 =k 72. Thus K is c-e-prime strong.

Converse follows trivially.
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