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Abstract. Wavelets transforms are effective mathematical tools useful in

compression and denoising of n-D signals. Subjecting a signal to discrete
wavelet transforms (DWT) generates approximation and detailed coefficients

that are similar to the coefficients generated by passing the signal through

lowpass and high pass filters respectively. Multilevel decomposition (filtering)
can be carried out which can successively filter the signal at each bandpass.

In this work, a normal sinus rhythm ECG signal noised with a sinewave

was denoised by DWT using by members of mother wavelets like coiflet,
symlet and biorthogonal families. The denoising performance of the wavelets

were evaluated by comparing the signal characteristics of the original and the

denoised signals.

1. Introduction

The Wavelet transform is a mathematical tool used in signal processing, Image
compression, denoising a signal, feature extraction etc. Wavelet transforms can be
broadly classified into two main types: the continuous wavelet transform (CWT)
and the discrete wavelet transform (DWT). The continuous wavelet transform
is a time-frequency transform, which is used for analyzing continuous signals or
in other words, a CWT is used for analyzing a signal whose frequency-domain
representation changes over time. A continuous wavelet transform provides a more
detailed analysis, but it is computationally expensive.
The Continuous wavelet transform is defined as

W (a, b) =
1

|a|

∫ ∞

−∞
x(t)ψ

(
t− b

a

)
dt

Here, W (a, b) is called the wavelet coefficient, ‘a’ and ‘b’ are the are the scaling
and translational parameters respectively. ψ(t) is called the mother wavelet. The
mother wavelet serves as a basis for generating a family of wavelets by different
dilations and translations. Morelet wavelet, Haar wavelet, Daubechies wavelet etc.
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are examples of some common mother wavelets.
With the discrete wavelet transform, scales are discretized more coarsely than with
continuous wavelet transform. A discrete wavelet transform is more easier to com-
pute and useful for denoising signals and compressing the images by preserving its
important features. It can be used to perform multi resolution analysis and split
signals into physically meaningful and interpretable components.

The discrete wavelet transform [1] is given by ψm,n(t) = a
−m
2 ψ

(
t−nb0
am
0

)
0 where m and

n are integer values related to scale and shift parameters ‘a‘ and ‘b‘ respectively,
and discretized as a = am0 and b = nb0. For more properties of wavelet transforms
one can refer [2],[3].
In discrete wavelet transform, the signal is decomposed into two levels such as
coarse approximation and detail information. In DWT, the signal passes through
a scaling filter band a wavelet filter. The output of these filters is down sampled
by a factor of 2 by discarding every other sample [4].
There are different kinds of wavelets. The choice of wavelet function depends on
the application. A Haar wavelet is the simplest type of wavelet. In our study,
we have used the daughter wavelets from coiflet, symlet and biorthogonal wavelet
families to assess denoising of ECG signals.
Coiflets are discrete wavelets designed by Ingrid Daubechies, at the request of
Ronald Coifman, which possess scaling functions with vanishing moments. These
wavelets are compactly supported with a higher number of vanishing moments
for both scaling function and wavelet function. It is an orthogonal wavelet. This
wavelet is not symmetric but near symmetric. A symlet is a reasonably short
wavelet in time domain with a good degree of smoothness. Symlet is a modi-
fication of Daubechies wavelet which has almost symmetrical characteristics. A
biorthogonal wavelet is a wavelet where the associated wavelet transform is invert-
ible but not necessarily orthogonal.
Wavelets have been extensively used for compressing as well as denoising signals.
1-D signals like radiofrequency or sound waves, and N-D signals like images, video
files etc can be effectively denoised with wavelets. However, the choice of the
wavelet for each application is empirical. Wavelets have also been used to denoise
biological signals like electrocardiogram (ECG), electroencephalogram etc. There
are numerous reports of wavelet based denoising of ECG signals in literature. For
a review on the wavelet families used for denoising ECG waves, one can refer to
[5].
Orthogonal wavelet families [such as- haar, daubechies, coiflet (coif), symmlet
(sym) etc.], and the biorthogonal wavelet (bior), at multiple levels of decomposi-
tion, have been extensively studied and employed for ECG denoising [6]. It has
been revealed that both the members of both the wavelet type families are suitable
for this purpose. In the current study, we used two orthogonal wavelets (coif5 and
sym4) and one biorthogonal wavelet (bior6.8) up to four levels of decomposition
to assess their capabilities in denoising a normal sinus rhythm ECG signal. In
addition, we have employed computational (peak signal to noise ratio) and clinical
assessment (by a cardiologist) to evaluate each wavelet’s performance in denoising
the signal.
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2. Methods

An ECG signal from MIT-BIH Normal Sinus Rhythm Database available on
PhysioNet [7], was used to perform denoising of signals using DWT. The database
includes ECG recording of 18 subjects from Boston’s Beth Israel Hospital (BIH).
All the recordings show normal sinus rhythm, with no significant arrhythmia. For
this research work, we have chosen the first record (No. 16265) without any pre-
processing. Record 16265 is a two-channel ECG recording containing 2 signals
(ECG1 and ECG2), with a sample rate of 128/sec and 25 minutes long (11730944
samples). The last 3 minutes of the recording consists of only noise, without any
ECG waves. For this study, we have used the initial 32000 samples from the ECG1
signal of the record.
Data analyses and visualization was performed using Python (3.12.1 stable release).
The ECG record from MIT-BIH Normal Sinus Rhythm Database was accessed us-
ing the Python library- Waveform Database Software Package (WFDB version
4.1.0) [8]. The other Python libraries used for data processing include- SciPy (for
scientific computing) and its subpackages -io, signal and stats [9], numpy (for nu-
merical computing) [10], matplotlib (for visualization) [11], Librosa (for audio file
processing) [12], os, pandas (for data analysis) [13] and scikit-image [image and
signal processing] [14]. The orthogonal and biorthogonal wavelet analysis were
performed using the PyWavelets [15] package for Python, an open-source wavelet
transform software with 1D, 2D and nD multilevel DWT and IDWT capabilities.
The processing and denoising of ECG signal using orthogonal and biorthogonal
DWT was performed in the following manner.

A. Adding noise to the ECG signal

The initial 32001 data samples from the ECG signal (record 16265) were ob-
tained and used for further analyses. The signal was analyzed using Fast Fourier
Transform to check for any noise frequencies (data not shown). However, the signal
was already preprocessed by the original investigators before it was made publicly
available. Therefore, we added a sinewave of 40 Hz with the same sampling rate
(180/s) and time duration (32000 samples) as that of the signal was added to it
to obtain noised ECG signal.

B. Multilevel 1D Discrete Wavelet Transform of signals

The pywt.wavedec() function of PyWavelets library was used for multilevel de-
composition of the signal that was obtained as a NumPy array. Along with the
signal, the other arguments of the function pywt.wavedec() include– wavelet type
and decomposition level (1-4). We used symmetric-padding, i.e., signal extension
by mirroring the samples, to extrapolate the input data before computing the
Discrete Wavelet Transform. We performed DWT of the noised signal using two
orthogonal wavelets (coif5 and sym4) and a biorthogonal wavelet (bior6.8), each
up to four levels. The computation generated sets of approximation coefficient
(cA, the lowpass sub band) and detailed coefficient (cD, the high pass sub band)
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at each level of the decomposition. The approximation coefficient (cA) obtained
at each level of the decomposition was used for further analysis.

C. Comparison of the original signal and the transformed signal at
each level of wavelet decomposition

We determined the peak signal to noise ratio (PSNR) between the original clean
signal and the cA (lowpass band) obtained at each level to determine the level of
noise in the processed signal. However, while using the pywt.wavedec() function, at
each level of decomposition, the data points obtained in cA approximately reduced
to half its previous value. That is, at level-1 the number of data points in cA (∼
16000) was half of the initial signal data points (32000 samples). Similarly, at
Level-2 decomposition, the number of cA data points obtained (∼ 8000) was half
as that of the data points of Level-1 cA, and so on. Therefore, the original clean
signal had to be down sampled (halved) at each level for calculating the PSNR
between the clean signal and the processed signal. We used scipy.signal.resample()
function to downsample the original clean signal. The 1-D signals were normalized
and the PSNR was calculated using the skimage.metrics.peak signal noise ratio()
function.
The transformed signal was also subjected to clinical evaluation by a consultant
cardiologist blinded to these processes to avoid any bias. The obtained cA (up to
four levels) for each of the three wavelets (coif5, sym4 and bior6.8) were evaluated
visually and compared with the original signal to check similarities and precision of
ECG components and features. The transformed signal that resembles the original
signal the most was identified by the observer.

3. Results

The raw ECG signals from record 16265 obtained from the MIT-BIH normal
sinus rhythm database is shown in Figure 1. The individual (P, Q, R, S, T)
wave components can be observed in the clean signal. Addition of 40 Hz sinewave
created noised wave which was then subjected to denoising using DWT. We have
performed the wavelet transforms only till level-4, since beyond that the resultant
transformed signals started losing pertinent features of ECG components.
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Figure 1. (A) The ECG signal (record no. 16265) accessed
from MIT-BIH Normal Sinus Rhythm Database. (Sampling rate:
180/s, first 400 data points are shown in the plot); (B) sinewave
of 40 Hz (noise, sampling rate: 180/s, sampling points: 400); (C)
Noised signal.

1. Multilevel decomposition using coif5 wavelet Figure 2 shows the four levels
of decomposition using coif5 wavelet. The PSNR values at each level are given in
Table 1. The highest PSNR is observed at level-1, where the cA plot exhibited all
the individual ECG wave components and matched with original signal, according
to the observations by the clinician.
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Figure 2. Plot of the original signal and the approximation coef-
ficients (cA) obtained from multilevel decomposition of the noises
signal using the orthogonal wavelet- coif5 (A) original signal; (B)
cA at level-1; (C) cA at level-2; (D) cA at level-3; (E) cA at level-
4.

2. Multilevel decomposition using syn4 wavelet
The four levels of noised wave decomposition using sym4 wavelet is shown in

figure 3 and their PSNR values at each level in Table 1. According to the
computation the highest PSNR is observed at level-1, whereas clinical comparison
showed that the level-2 retains the most features of ECG (P, Q, R, S, T) wave
components.
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Figure 3. Plot of the original signal and the approximation coef-
ficients (cA) obtained from multilevel decomposition of the noises
signal using the orthogonal wavelet- sym4 (A) original signal; (B)
cA at level-1; (C) cA at level-2; (D) cA at level-3; (E) cA at level-
4.

3. Multilevel decomposition using bior6.8 wavelet
The plot of the cA at each level of noised wave decomposition by bior6.8 is

shown in figure 4. Here the level-1 shows the highest PSNR value (Table 1).
However, the clinical examination showed that level-2 coefficients were mst similar
to the original ECG wave.
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Figure 4. Plot of the original signal and the approximation coef-
ficients (cA) obtained from multilevel decomposition of the noises
signal using the biorthogonal wavelet- bior6.8 (A) original signal;
(B) cA at level-1; (C) cA at level-2; (D) cA at level-3; (E) cA at
level-4.

Wavelet PSNR(db) values at
Level-1 Level-2 Level-3 Level-4

coif5 26.87* 14.19 12.32 10.25
sym4 15.21 14.20* 12.64 10.83
bior6.8 14.80 14.06* 12.32 10.42

Table1.PSNR values of the approximation coefficient at four levels of decom-
position. * Indicates the level at which the signal exhibits closest resemblance to
the original wave in terms of precision when examined by the clinician.

4. Discussion and conclusion

Discrete Wavelet Transform is a set of mathematical functions employed to
compress and denoise N-dimensional signals. In this research work, we performed
multilevel decomposition on a noised ECG signal using two orthogonal wavelets-
coif5 and sym4, and a biorthogonal wavelet- bior6.8 using the PyWavelet library
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for Python. Four levels of decomposition were performed and the approximation
coefficients at each level were plotted and compared with the original clean signal
computationally by calculating peak signal to noise ratio (PSNR), and visually by
a cardiologist who was blinded to the computational aspects of the work.
The PSNR values of each wavelet kept decreasing with each increasing decomposi-
tion levels, indicating that, with each level of decomposition the loss pass sub band
was becoming noisier. With each increasing level, the signal was deviating more
from the original wave. However, visual inspection and comparison of the cAs with
the original wave by a clinician resulted in a different outcome. The comparison
of the clinician was based on the presence or absence of of ECG sub-wave features
in the cAs and the level of precision with the original ECG wave. In two out of
three wavelets (Table 1), the clinician chose signals that has lower PSNR values
to be more precise than their higher PSNR counterparts. There included sym4
(orthogonal wavelet) and bior6.8 (biorthogonal wavelet).
Among the three signals that exhibited the maximum resemblance with the orig-
inal signal, the approximation coefficient of coif5 had most precision comparison
to sym4 and bior6.8. Therefore, it can be concluded that coif5 is more suitable for
denoising ECG signals than sym4 ans bior6.8. In addition, for denoising of biolog-
ical signals, the computational tools and PSNR should not be the only criteria for
determining the suitability of a wavelets, the clinical interpretation and opinion
should also be an important factor in their selection.
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