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Abstract. Graph labeling is an assignment of labels to the nodes/lines or both of a graph Gα

subject to a few norms. The field of graph theory, particularly graph labeling, plays a vital role
in various fields such as x−ray crystallography, radar, astronomy, etc. A graph Gγ is a prime

distance graph if its nodes can be assigned with unique integers such that for any two adjacent

nodes, the positive difference of their labels is a prime number. Laison et al. [9] have raised the
following questions. (1) Is there a family of graphs which are prime distance graphs if and only

if Goldbach’s conjecture is true? (2) What other families of graphs are PDGs? Parthiban et
al. answered these questions to some extend [13]. In continuation, in this paper these questions

are answered further by establishing prime distance labeling of certain graphs using Goldbach’s

conjecture and the Twin prime conjecture, besides characterizing certain classes of graphs in
terms of prime distance labeling and formulating interesting conjectures.

1. Introduction

The graphs considered in the present study are “simple, finite, undirected, and connected”. As
usual, let G,Pn, Cn,Kn denote a graph, path, cycle, and complete graph on n nodes, respectively.
For other graph theoretic terminologies, refer [15] and number theoretic concepts, refer [3]. Let
Z and P represent the set of all integers and primes, respectively. The concept of prime distance
graph (PDG) was introduced by Eggleton et al. [4, 5]. “For any set Dk of positive integers, they
considered the distance graph Z(Dk) as the graph with node set Z and a line between integers
s and t if and only if |s − t| ∈ Dk. The prime distance graph Z(P ) is the distance graph with
Dk = P”. One can notice that the PDG is infinite. This paper deals with finite subgraphs of Z(P ).

Laison et al. [9] gave the notion of finite prime distance graph. A graph Gα is a PDG if there
exists a one-to-one labeling of its nodes t : V (Gα) → Z such that for any two adjacent nodes x1

and x2, the integer |t(x1)− t(x2)| is a prime and t is called a prime distance labeling (PDL) of Gα.
Laison et al. have showed very interesting and remarkable results using various number theoretic

statements and results in [9] and also raised the following questions. (1) Is there a family of graphs
which are PDGs if and only if Goldbach’s conjecture is true? (2) What other families of graphs are
PDGs?. Parthiban et al. answered these questions to some extend [1, 11, 13]. In continuation of
[13], in this paper, we extend the results further and explore a few more classes of PDGs.
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2. Some Important Known Results

This section recollects some results concerning PDL for the sake of completeness and under-
standing.

Theorem 2.1. [9] “Every subgraph of a PDG is PDG”.

Lemma 2.2. [9] “Any graph Gf with χ(Gf ) ≥ 5 cannot have PDL”.

Conjecture 2.3. (Goldbach’s)[9, 8] Any even number 2r > 2 can be written as a sum of two
primes.

Conjecture 2.4. (“Twin Prime Conjecture (TPC)”)[9, 8] “There are infinitely many pairs
of primes whose difference is 2”.

Lemma 2.5. [11] “If S is a subgraph of H with no PDL, then H cannot have PDL”.

Theorem 2.6. [13] “If a graph Gr is formed from a cycle Cr by duplicating an arbitrary node by
a node, then Gr allows PDL for all r ≥ 6 if and only if Goldbach’s conjecture is true.”

Theorem 2.7. [13] “The triangular book with book marks, B
(3)
n , allows PDL ∀n ∈ Z+ if and only

if the TPC is true.”

Theorem 2.8. [13] “The jewel graph Jn allows PDL if and only if the TPC is true.”

Theorem 2.9. [13] “The pizza graph Pzr allows PDL ∀r ≥ 3 if the TPC is true.”

Theorem 2.10. [13] “The generalized Jahangir graph, Jm,k, allows PDL ∀m ≥ 3, k ≥ 1.”

Theorem 2.11. [9] “Every bipartite graph allows PDL.”

3. Main Results

In this section, PDL of some new classes of graphs are derived.

Theorem 3.1. The graph obtained by gluing finite copies of Kn, 1 ≤ n ≤ 4 by a line allows PDL.
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Figure 1. PDL of a graph formed by gluing three copies of K4 by a line
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Proof. One can obtain the PDL of the graph formed by joining finite copies of Kr by a line for
1 ≤ r ≤ 3. So, we consider, the graph Gα, constructed by joining finite, say r, copies of K4 by
a line. Obviously, |V (Gα)| = 4r and |E(Gα)| = 7r − 1. Further, let {vji : 1 ≤ i ≤ 4; 1 ≤ j ≤ r}
be the nodes of Gα. Define an injective map hα : V (Gα) → Z as follows: WLG, let hα(v

1
1) = 0,

hα(v
1
2) = 2, hα(v

1
3) = 5, and hα(v

1
4) = 7. Now, let p1 be the sufficiently large prime number than

the already used labels. Then, hα(v
2
i )=hα(v

1
i ) + p1, 1 ≤ i ≤ 4. Similarly, let p2 be the sufficiently

large prime number than the used labels. Then, hα(v
3
i )= hα(v

1
i ) + p2: 1 ≤ i ≤ 4. Continuing

thus, for the rth copy of K4, let pr−2 be the sufficiently large prime than the used labels. Then,
hα(v

r
i )=hα(v

r−1
i ) + pr−2. One can verify that hα is the required PDL of Gα. (see, Figure 1) □

Theorem 3.2. The graph obtained by gluing a finite copies of Kr by a line does not allow PDL
for r ≥ 5.

Proof. The proof directly follows from Lemma 2.2 and Lemma 2.5. □

Definition 3.3. [7] “LetGx andGy be two graphs with no node in common. The join ofGx andGy,
denoted by Gx+Gy, defined to be the graph as follows: V (Gx+Gy) = V (Gx)∪V (Gy), E(Gx+Gy) =
E(Gx) ∪ E(Gy) ∪ {t1t2 : t1 ∈ V (Gx), t2 ∈ V (Gy)}.”
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Figure 2. PDL of K1 +K1,8

Theorem 3.4. The graph K1 +K1,n has a PDL if and only if the TPC is true.

Proof. Let {x0, x1, x2, ..., xn} be the nodes of K1,n with central node x0 and {t} be the node of
K1 so the lines of K1 +K1,n are {tx0, txi, x0xi, i = 1, 2, .., n}. Here, |V (K1 +K1,n)| = n + 2 and
|E(K1 + K1,n)| = 2n + 1. First suppose that K1 + K1,n has a PDL for an arbitrary n ≥ 1, and
consider one such PDL of K1 + K1,n. WLG, suppose that t and x0 are assigned with 0 and −2,
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Figure 3. PDL of K4 + S6

respectively. Note that the remaining nodes cannot be of even labels. In each of these K3, since
both even-labeled nodes are connected to xi; 1 ≤ i ≤ n, their labels must be odd, more specifically,
primes. Since their difference is a prime number, so each xi is assigned with a prime number, so
that their difference with t and x0 produce twin primes. i.e., if K1 + K1,n is a PDG, there are
exactly n twin primes. Hence, if all K1 +K1,n are PDG, then the TPC is true.

Conversely, if the TPC is true, then assigning t with 0, x0 with −2, and xi of each K3 with a
prime p (where p+ 2 is also prime) is a PDL of K1 +K1,n. (See, Figure 2) □

Definition 3.5. “The graph Kr+Sr is obtained by attaching to the center of Sr to a node of Kr”.

Lemma 3.6. The graph Kn + Sm allows PDL for 1 ≤ n ≤ 4 and any m ∈ N .

Proof. The proof is simple for the case of n = 1, 2, 3. So, consider the case of n = 4. Thus, the
graph obtained is K4 + Sm,∀m ∈ N with V (K4) = vi : 1 ≤ i ≤ 4 and V (Sm) = uj : 0 ≤ j ≤ m.
WLG, let the center node of Sm, say u0, be merged with v1 ∈ K4. Define a one-one function
hα : V (K4 + Sm) → Z as follows: WLG, let hα(v1) = 0, hα(v2) = 2, hα(v3) = 5, and hα(v4) = 7.
Then, hα(ui) = pi; for 1 ≤ i ≤ m, where p′is are sufficiently large primes. One can easily verify
that hα is the PDL of K4 + Sm. (see, Figure 3) □

Theorem 3.7. The graph Kn + Sm does not allow PDL for n ≥ 5 and m ∈ N.

Definition 3.8. [14] The Cartesian product of graphs Gz and Hz is the graph Gz ×Hz with node
set V (Gz×Hz) = V (Gz)×V (Hz) and line set E(Gz×Hz) = {(g, h)(g′, h′)|gg′ ∈ E(Gz) and h = h′,
or hh′ ∈ E(H) and g = g′}.

Theorem 3.9. The graph Cn×Pm allows PDL for any n ≥ 3 and m ∈ N if Goldbach’s conjecture
is true.

Proof. Let Cn be the given cycle and Pm be the path on n and m nodes, respectively. Obtain
Cn × Pm with V (Cn × Pm) = {vji ; for 1 ≤ i ≤ n and 1 ≤ j ≤ m}. Define hβ : V (Cn × Pm) → Z
as follows: WLG, let hβ(v

1
i ) = 2(i − 1); 1 ≤ i ≤ n − 1. Now, if the Goldbach’s conjecture is true,

then hβ(v
1
n−1) = p ∗1 +p∗2, where p∗1 and p∗2 are primes. Then, let hβ(v

1
n) = p∗1 or p∗2 so that

|hβ(v
1
n−1)− hβ(v

1
n)| is a prime. Also, let p1 be the first prime greater than the used labels. Then,

hβ(v
2
i ) = hβ(v

1
i )+ p1 for 1 ≤ i ≤ n. Similarly, let p2 be the first prime greater than the used labels.
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Figure 4. PDL of C3 × P4

Then, hβ(v
3
i ) = hβ(v

1
i ) + p2 for 1 ≤ i ≤ n. Continuing thus, let pm−1 be the first prime greater

than the used labels. Then, hβ(v
m
i ) = hβ(v

1
i ) + pm−1 for 1 ≤ i ≤ n. One can check that hβ is the

PDL of Cn × Pm. (see, Figure 4) □

Conjecture 3.10. The graph obtained by replacing every line of a star graph K1,n by the bipartite
graph K1,n,1 does not allow PDL for n ≥ 3.

Theorem 3.11. The line graph L(Gα) of Gα is the graph whose nodes are the lines of Gα, with
ef ∈ E(L(Gα)) where e = uv and f = vw in Gα.

Definition 3.12. The armed crown ACrn is a graph in which P2 is attached at each node of Cn

by a line.

Theorem 3.13. The graph L(ACrn) allows PDL if Goldbach’s conjecture is true.

Proof. For ACrn, let x1, x2, ..., xn be the lines of Cn and x′
1, x

′
2, ..., x

′
n corresponding to paths and

x′′
1 ,x

′′
2 , ..., x

′′
n be the lines joining path and Cn. Then, V (L(ACrn)) = {x1, x2, ..., xn, x

′
1, x

′
2, ..., x

′
n, x

′′
1 ,

x′′
2 , ..., x

′′
n}. Here, |V (L(ACrn))| = 3n and |E(L(ACrn))| = 4n. Define hβ : V (L(ACrn)) → Z as

follows: WLG, let hβ(vi) = 2(i − 1); 1 ≤ i ≤ n − 1. Now, if Goldbach’s conjecture is true, then
hβ(vn−1) = p1+p2, where p1 and p2 are primes. Then, hβ(vn) = p1 or p2 so that |hβ(vn)−hβ(vn−1)|
is prime and |hβ(vn) − hβ(v1)| also prime. Then, let pr1 be the sufficiently large unused prime
number. Then, hβ(u1) = pr1, hβ(ui) = hβ(ui−1) + 2 for 2 ≤ i ≤ n − 2; hβ(un−1) = hβ(vn−1) + 2;
hβ(un) = p2. Finally, hβ(wi) = hβ(ui) + pi where p′is are sufficiently large prime numbers. Hence
the proof. (see, Figure 5) □
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Figure 5. PDL of L(ACr5)
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Figure 6. PDL of TB(8)

Definition 3.14. Let Lk = Pk ×P2(k ≥ 2) be the ladder graph with node set xi and yi, 1 ≤ i ≤ n.
The triangular belt, TB(k), is fixed from Lk by adding the lines xiyi+1∀1 ≤ i ≤ k − 1.

Theorem 3.15. TB(k) allows PDL for all k ∈ N .

Proof. Let TB(k) be the given triangular belt with V (TB(k))=V1 ∪V2; where V1 = {ui; 1 ≤ i ≤ k}
and V2 = {vi; 1 ≤ i ≤ k}. Define hγ : V (TB(k)) → Z as follows: WLG, let hγ(ui) = 2(i − 1); 1 ≤
i ≤ k and hγ(v1) = hγ(u1) + 5. Then, hγ(vi) = hγ(vi−1) + 2; ∀2 ≤ i ≤ k. Thus, hγ is the PDL of
TB(k). (see, Figure 6) □

Definition 3.16. The alternate triangular belt, ATB(k), is derived from Lk by adding the lines
x2i+1y2i+2 ∀ i = 1, 2, ..., k − 1 and x2iy2i+1 ∀ i = 1, ..., k − 1.

Theorem 3.17. ATB(k) allows PDL ∀k ∈ N .

Proof. The proof is same as given in the above theorem. □

3.1. PDL of Double and Strong Double Graphs. In this section, PDL of double and strong
double graphs of some graphs are derived.
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Figure 7. PDL of SD(P6)

Definition 3.18. [10] “For a graph Gx, the double graph D[Gx] is a graph formed by taking two
copies of Gx and joining each node in one copy with the neighbors of corresponding node in another
copy”.

Lemma 3.19. [6] For any graph Hx, Hx is bipartite if and only if D[Hx] is bipartite.

Theorem 3.20. For any bipartite graph Gy, D[Gy] allows PDL.

Proof. The proof directly follows from Theorem 2.11 and Lemma 3.19. □

Lemma 3.21. [6] For any graph Gr, χ(D[Gr]) = χ(Gr).

Theorem 3.22. For any graph Gz with χ(Gz) ≥ 5, D[Gz] does not allow PDL.

Proof. The proof follows from Lemma 3.21 and the fact that the chromatic number of any PDG is
less than or equal to 4. □

Definition 3.23. [6] “The lexicographic product of two graphs Gx and Hy is the graph Gx ◦Hy

with V (Gx) × V (Hy) as node set and with adjacency defined by (x1, y1) adj(x2, y2) if and only if
x1 = x2 and y1 adj y2 in Hy or x1 adj x2 in Gx. The graph Gx ◦Hy can be constructed from Gx

substituting to each node x of Gx a copy Hs of Hy and joining every node of Hs with every node
of Ht whenever s and t are adjacent in Gx.”

Lemma 3.24. [6] For any graph Gt on t nodes, D[Gt] = Gt ◦ N2 and D[Gt] is t−partite, where
Nk is the graph on k nodes without lines.

Theorem 3.25. For any graph Gz on z nodes, D[Gz] = Gz ◦Nk does not allow PDL for k ≥ 5.

Definition 3.26. [10] “The strong double graph SD(Gs) of Gs, is formed by taking two graphs
and joining the closed neighborhood of each node in one graph to the adjacent node in the other
graph”.

Theorem 3.27. SD(Pn) allows prime distance labeling ∀n ≥ 1.

Proof. Let Pn be the given path on n nodes, namely v1, v2, ..., vn. Take two copies of Pn and obtain
SD(Pn) as defined above.

Define an injective function hγ : V (SD(Pn)) → Z as follows: WLG, let hγ(v1) = 0, hγ(v2) =
7, hγ(u1) = 2, and hγ(u2) = 5. Then, hγ(v3)= hγ(u2) + 5, hγ(u3)= hγ(v2) + 5, ..., hγ(vk)=
hγ(uk−1) + 5, and hγ(uk)= hγ(vk−1) + 5. One can see that hγ is the PDL of SD(Pn). (see, Figure
7) □
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3.2. PDL of Generalized Cone Graphs. In this section, we completely characterize the PDL
of generalized cone graphs.

Definition 3.28. A generalized cone graph (GCG), denoted by Cs + It, is the join of Cs and an
independent set It, where s ≥ 3 and t ≥ 0.

Theorem 3.29. Cs + It allows PDL for s ≥ 3 and t = 0.

Proof. The proof follows from the fact that the resultant graph is a cycle and every cycle admits
PDL. □

Theorem 3.30. Cs + It allows PDL for 3 ≤ s ≤ 8 and t = 1.

Proof. The proof follows from the fact that the resultant graph is a wheel and every wheelWn, n ≤ 9
allows PDL. □

Theorem 3.31. Cs + It does not allow PDL for s ≥ 9 and t = 1.

Proof. The proof follows from the fact that the resultant graph is a wheel and every wheel Wn, n ≥
10 does not allow PDL. □

Theorem 3.32. Cs + It does not allow PDL for s ≥ 3 and t ≥ 2.

Proof. Let Cs + It be the given GCG on s + t nodes, where s ≥ 3 and t ≥ 2. For the sake of
discussion, consider the case of s = 3 and t = 2. The proof now easily follows from the fact that
the resultant graph is K5 − e and one can see that the graph does not admit PDL. The other cases
when s ≥ 4 and t ≥ 3 can be dealt in the same way. □

3.3. PDL of the Limit Graph of a Graph. In this section, we completely characterize the
PDL of limit graph of the given graph. In 2024, B. Akhil et al. [2] introduced the concept of finding
the limit graph of a given graph. They also categorized graphs based on whether or not they have
a unique limit graph.

Definition 3.33. [2] “Let Gz = (V,E) be a connected graph on z nodes, z ≥ 2 and S ⊂ V (Gz).
Let Hz = <S> be a connected subgraph of Gz with minimal order and size such that the open
neighborhood of S, N(S) = V (Gz). This Hz is said to be the limit graph of Gz and is represented
by lim(Gz).”

One can see that every graph has at least one limit graph and lim(G) need not be unique.

Theorem 3.34. The limit graph of any finite prime distance graph is a PDG.

Now we propose the following conjecture.

Conjecture 3.35. If G is any finite graph possibly except Kn for large n, then lim(G) allows PDL.

3.4. Distinct Prime Distance Labeling of Graphs. In this section, we propose an interesting
conjecture.

Definition 3.36. [12] “A PDL of a graph Gw is distinct if the absolute differences of the integer
labels of adjacent nodes are distinct prime numbers.”

Conjecture 3.37. Almost all graphs are not distinct prime distance graphs.

This conjecture is proposed by considering the very difficult conditions of the definition. We
believe that except a few classes of graphs, almost all other graphs may not admit distinct PDL.
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4. Open problems

In addition to the conjectures, we pose the following questions.

(1) For any graph Gs with PDL, do D[Gs] and SD[Gs] also allow PDL?
(2) What are the classes of graphs Gi such that D[Gi] and SD[Gi] allow PDL?
(3) What are the classes of graphs Gi such that K1 +Gi admit or do not admit PDL?

Conclusion. In this article, the questions raised by Laison et al. [9] are answered to some extend
along with establishing PDL for a few notable graphs using Goldbach’s conjecture and the Twin
prime conjecture. The PDL of certain families of graphs are characterized. So this article may
serve as a tool to either completely or partially characterize prime distance graphs. Finally, a few
interesting conjectures and open problems are also formulated for the future study.

Acknowledgment. Authors would like to thank the anonymous reviewers for their valuable sug-
gestions.
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