Stochastic Modeling and Applications Vol.26 No. 1 (January-June, 2022) ISSN: 0972-3641

Received: 19th January 2022 Revised: 16th February 2022 Selected: 20th March 2022

ON HOPF LIGHTLIKE HYPER SURFACES OF INDEFINITE COSYMPLETIC MANIFOLD

SUSHIL SHUKLA

Department of Mathematics Faculty of Engineering and Technology, Veer Bahadur Singh Purvanchal University, Jaunpur 222001, India Email: sushilcws@gmail.com

Abstract

The object of present paper is to study the properties of Hopf lightlike hypersurfaces of indefinite cosympletic manifold.

Keywords: Hopf lightlike hypersurfaces, Cosympletic manifold 2010 AMS Classification Number:53C15, 53C25, 53C50,

1. Introduction

An (1, m)-type connection [1] is defined as linear connection with $\overline{\nabla}$, \overline{T} holds

$$(\overline{\nabla}_{A}g)(B, C) = l\{\theta(B)g(A, C) + \theta(C)g(A, B)\} - m\{\theta(B)\overline{g}(JA, C) + \theta(C)\overline{g}(JA, B)\}$$
(1.1)

$$T(A,B) = l\{\theta(B) | A - \theta(A) | B\} + m\{\theta(B)JA - \theta(A), JB\}$$
(1.2)

It is simple to calculate directly that

$$\nabla_A B = \nabla_A B + \theta(B) \{ lA + m JA \}.$$
(1.3)

Description of Hopf hypersurfaces is discussed by magnitude of Hopf principal curvature. [16] [3] [5] [12] [14] [15].

2. Lightlike hypersurfaces

Gauss Weingarten formula for M and S(TM) are

$$\overline{\nabla}_A B = \nabla_A B + T(A, B) N.$$
(2.1)

$$\overline{\nabla}_A N = -Q_N A + \tau(A)N, \qquad (2.2)$$

$$\nabla_A PB = \nabla_A^* PB + C(A, PB)\xi.$$
(2.3)

$$\nabla_A \xi = -Q_{\xi}^* A + \sigma(A)\xi.$$
(2.4)

For U, V, we have

U = - J N, V = J
$$\xi$$
, u(A) = g (A, V), v(A) = g (A, U). (2.5)

Operating J to vector field, A = SA + u(A)U

$$JA = FA + u(A)N, \qquad (2.6)$$

Again, operating J to (2.6) and with (1.2), (1.3), (2.5), we find

$$F^{2}A = A - u(A)U$$
(2.7)

with (1.1), (1.2), (2.1), (2.7), we get

$$(\nabla_A g)(B, C) = T(A, B) \eta (C) + B(A, C)\eta(B) - l\{\theta(B)g(A, C) + \theta(C)g(A, B)\} - m\{\theta(B)g(JA, C) + \theta(C)g(JA, B)\},$$
(2.8)

$$T(A, B) = l\{\theta(B)A + \theta(A)B\} + m\{\theta(B)FA - \theta(A)FB\},$$
(2.9)

$$T(A, B) - T(B, A) = m\{\theta(B)u(A) - \theta(A)u(B)\}$$
(2.10)

where θ is 1-form.

Since T (A, B) = $\overline{g}(\overline{\nabla}_A B, \xi)$, therefore,

$$T(A,\xi) = 0, \tag{2.11}$$

Second fundamental forms are

$$T(A,B) = g(Q_{\xi}^*A, B) + mu(A)\theta(B), \quad \overline{g}(Q_{\xi}^*A, N) = 0, \quad (2.12)$$

$$C(A, PB) = g(Q_N A, PB) + \{l\eta(A) + mv(A)\}\theta PB, \ \overline{g}(Q_N A, N) = 0$$
(2.13)
Replacing A by ξ in (2.12), we get

$$Q_{\xi}^{*}\xi = 0,$$

$$\overline{\nabla}_{A}\xi = -Q_{\xi}^{*}A - \tau(A)\xi$$
(2.14)

Operating ∇_A to $F\xi = -V$ and $FV = \xi$, we have

$$(\nabla_A F)\xi = -\nabla_A V + F(Q_{\xi}^*A - \tau(A)V, \qquad (2.15)$$

$$(\nabla_A F)V = -F\nabla_A V - Q_{\xi}^* A - \tau(A)\xi.$$
(2.16)

Applying $\overline{\nabla}_A$ to g (U, U) and g (V, V), we have

$$u(\nabla_A U) = 0, \ u(\nabla_A V) = 0.$$
 (2.17)

3. Indefinite Cosympletic Manifold

Let M be an almost contact manifold equipped with an almost contact metric structure (ϕ, ξ, η, g) [19]

$$J^{2}A = -A + \theta(A)\zeta, \ \overline{g}(JA, JB) = \overline{g}(A, B) - \theta(A), \ \theta(B), \theta(\zeta) = 1,$$
(3.1)

An almost contact metric structure is cosymplectic [14] if and only if both $\nabla \eta$ and $\nabla \phi$ vanish, where ∇ is the covariant differentiation with

respect to g.

$$d\eta = 0 \qquad d\phi = 0. \tag{3.2}$$

By (3.1) and (3.2), we have

$$\overline{\nabla}_A \zeta = A - \theta(A)\zeta, \ d\theta(A, B) = g(A, JB).$$
(3.3)

For two null vector field U, V,

$$U = -JN, V = J\xi. \tag{3.4}$$

Vector A = SA + u (A)U with,

$$u(A) = g(A, V); v(A) = g(A, U).$$
 (3.5)

Operating J to (3.5),

$$JA = FA + u(A)N, (3.6)$$

operating $\overline{\nabla}_A$ in (3.4), (3.6) with (2.1), (2.4), (3.4), (3.6), we derive

$$B(A,U) = C(A,V), \qquad (3.7)$$

$$\nabla_A U = F \left(Q_N A \right) + \tau \left(A \right) U - \nu(A) \zeta, \qquad (3.8)$$

$$\nabla_A V = F \left(Q_{\xi}^* A \right) - \tau \left(A \right) V - u(A) \zeta, \qquad (3.9)$$

$$(\nabla_{A}F)B = u (B)Q_{N}A - T(A, B)U$$

$$+\overline{g}(JA, B)\zeta - \theta(B)F A.$$
(3.10)

Operating $\overline{\nabla}_A$ on $g(\zeta,\xi) = 0$ $\overline{g}(\zeta,N) = 0$ and using (3.3), we obtain

$$T(A,\zeta) = 0, \quad C(A,\zeta) = \eta(A).$$
 (3.11)

Theorem 1: A cosympletic manifold with an indefinite structure, a lightlike hypersurface M and its transversal connection with parallel F, is flat.

Proof: For parallel F, (3.10), yields

$$u(B)Q_NA - T(A,B)U = 0.$$
 (3.12)

Replacing A by U and B by V, we have $\lambda = 0$. Therefore \overline{M} is flat manifold.

Replacing B by U in (3.12), gives

$$Q_N \mathbf{A} = \sigma(A) U. \tag{3.13}$$

Scalar product with V to (3.12), yields

$$T(A, B) = u(B) \sigma(A).$$

Equivalently $g(Q_{\varepsilon}^*A, B) = g(\sigma(A)V, B).$

Since both Q_{ε}^*A and V belong to non-degenerate S(TM), hence we get

$$Q_{\varepsilon}^* \mathbf{A} = \sigma(\mathbf{A}) \mathbf{V}. \tag{3.14}$$

With (3.13), (3.14), (2.10) gives $\lambda = \mu = 0$. Hence

$$R (A, B) C = \{ \sigma (B) \sigma (A) - \sigma (A) \sigma (B) \} u(C) U = 0.$$

Giving M flat.

With (3.13), (3.8) FU = 0, gives $\nabla_A U = \tau(A) U$

With this and $\nabla_A \nabla_B U - \nabla_B \nabla_A U - \nabla_{[A,B]} U = 0$, we have $d\tau = 0$.

4. Hopf lightlike hypersurfaces

A Hopf lightlike hypersurface is a lightlike hypersurface with smooth function f such that [16]

$$Q_{\xi}^* U = f U \tag{4.1}$$

(4.1) with scalar product with A and (3.5), gives,

$$T(A, U) = f v(A),$$

$$C(A,V) = f v(A),$$

$$\sigma(A) = f v(A).$$
(4.2)

Lie recurrent F defined as [17]

$$(L_{A}F) B = v(A) FB.$$
(4.3)

Equivalently

$$(L_A F) B = [A, FB] - F[A, B]$$

$$(4.4)$$

If $(L_4 F) = 0$, then F is Lie parallel.

Theorem 2: On Lie recurrent indefinite cosympletic manifold with ζ as tangent to M, F is Lie parallel.

Proof: Since $\overline{\nabla}$ is torsion free hence by (4.3) and (4.4), we get

$$(\nabla_A F) \quad B = \nabla_{FB} A - F \nabla_B A + \sigma \ (A) FB.$$

$$(4.5)$$

Equation (2.16), (4.5) with B = V, yields

$$\nabla_{\xi}A = -F(\nabla_{A}V - \nabla_{V}A) - Q_{\xi}^{*}A - \{\sigma(A) + \tau(A)\}\xi.$$
(4.6)

Again comparing (2.15) with (4.5), and replacing B by ξ , we get

$$u(\nabla_A V - \nabla_V A) = 0, \ \theta(\nabla_A V - \nabla_V A) = 0.$$
(4.7)

Applying F in (4.5) and with (2.7), (4.7), (4.6), we obtain $\sigma = 0$. Hence F is Lie parallel.

Definition: A cosympletic manifold is cosympletic space form if

$$\vec{R}(A, B) \quad C = \frac{(c-3)}{4} \{ \overline{g}(B, C) \ A - \overline{g}(A, C) \ B \}$$

$$+ \frac{(c+1)}{4} \{ \overline{g}(A, JC) JB - \overline{g}(B, JC) JA$$

$$+ 2 \overline{g}(A, \ JB) JC + \theta(A) \ \theta(C) \ B - \theta \ (B) \ \theta(C) \ A$$

$$+ \overline{g}(A, C) \ \theta(B) \zeta - \overline{g}(B, C) \ \theta(A) \zeta.$$

$$(4.8)$$

With (1.2), (1.3) and (2.2), we obtain

$$\overline{R}(A, B) C = \overline{R}(A, B) C + (\nabla_A \theta) (C) \{l(B + mJB) - (\nabla_B \theta)(C) \{l(A + mJA) + \theta(C) \{(Al)B - (Bl)A + (Am)JB) - (Bm)JA - m [\theta (B)JA - \theta(A)JB] - 2m\overline{g}(A, JB)\zeta \}.$$

$$(4.9)$$

Scalar product of this with ξ and N and with (3.2), (3.7), (4.1), (4.2), (4.8) we obtain

$$\nabla_{A}T(B, C) - \nabla_{B}T(A, C) + \{\tau(A) - 1\theta(A)\} T(B, C) - \{\tau(B) - 1\theta(B)\}T(A, C) - m\{\theta(A)T(FB, C) - \theta(B)T(FA, C)\} - m\{(\overline{\nabla}_{A} \theta)(C)u(B) - (\overline{\nabla}_{B} \theta)(C)u(A) - \theta(C)\{[Am+m\theta(X)]u(B) - [Bm+m\theta(B)]u(A)\} = \frac{(c+1)}{4}\{u(B)\overline{g}(A, JC) - u(A)\overline{g}(B, JC) + 2\{u(C)\overline{g}(A, JB)\}.$$

$$(4.10)$$

Applying $\overline{\nabla}_A$ in $\theta(U) = 0$ and $\theta(\xi) = 0$ and using (2.14), we have $(\overline{\nabla}_A \theta)U = -\theta(\nabla_A U), \quad (\overline{\nabla}_A \theta)\xi = -\theta(Q_{\xi}^*A).$ (4.11)

Theorem 3: For indefinite cosympletic manifold \overline{M} with Hopf lightlike hypersurface M, c=1.

Proof: Taking A= U (4.6) and with (4.3), (4.4), we get

$$\nabla_{\xi} U = -Q_{\xi}^* U. \tag{4.12}$$

Taking scalar product with ζ , we get

 $\theta(\nabla_{\xi}U) = -\theta(Q_{\xi}^*U).$

Comparing with (2.10), we have

$$\theta(\nabla_{\xi}U) = \theta(Q_{\xi}^*U) = 0, \ T(U,\zeta) = m, \ T(\zeta,U) = 0.$$

$$(4.13)$$

Scalar product of U to (4.12) with (2.17), yields

$$T(U,U) = 0.$$
 (4.14)

Operating ∇_{ξ} in (4.14) and using (2.10), (2.12), (4.12) with (4.13), we get

$$(\nabla_{\xi}T)(U,U) = 2g(Q_{\xi}^{*}U,Q_{\xi}^{*}U).$$
(4.15)

Applying ∇_{U} to $T(\xi, U)$ and with (2.4), (2.10) to (2.12), (4.13), we get

$$(\nabla_{U}T)(\xi,U) = g(Q_{\xi}^{*}U,Q_{\xi}^{*}U).$$
(4.16)

Replacing A by ξ , B and C by U in (4.10) and with (2.11), (4.11), (4.13), (4.15), (4.16), we get

$$g(Q_{\xi}^*U,Q_{\xi}^*U)=3\left(\frac{c-1}{4}\right).$$

As M is Hopf lightlike hypersurface so $Q_{\xi}^*U = \lambda U$, hence $g(Q_{\xi}^*U, Q_{\xi}^*U) = 0$.

Therefore
$$\frac{c-1}{4} = 0$$
. Hence $c = 1$.

Acknowledgement

This work is financially supported by Minor research Project grant of VBS Purvanchal University Jaunpur Letter No.: 133/ Puo Vio Vio /IQAC/2022 Dated: 23/03/2022.

References

- D.H. Jin. Lightlike hypersurfaces of an indefinite transSasakian manifold with an (l, m)-type connection, *J. Korean Math. Soc.*, 55(5) (2018) 1075-1089.
- [2] N.S. Ageshe, M.R. Chafle. A semi-symmetric non-metric connection on a Riemannian manifold, Indian J. Pure Appl. Math., 23(6)(1992) 399-409.
- [3] H. Anciaux, K. Panagiotidou, Hopf hypersurfaces in pseudo-Riemannian complex and para-complex space form, *Differential Geometry and its Applications* 42 (2015), 1–14.
- [4] D.H. Jin Lightlike hypersurfaces of an indefinite Kaehler manifold with a semisymmetric non-metric connection, J. Korean Math. Soc. 54(1) (2017), 101–115.
- [5] T. Cecil, P. Ryan, Focal sets and real hypersurfaces in complex projective

space, Trans. Amer. Math. Soc. 269 (1982), 481-499.

- [6] D.H. Jin, Lightlike hypersurfaces of an indefinite trans-Sasakian manifold with a nonmetric φ-symmetric connection, *Bull. Korean Math. Soc.* 53(6) (2016), 1771–1783.
- [7] D.H. Jin, Lightlike hypersurfaces of an indefinite Kaehler manifold with a nonmetric φ-symmetric connection, *Bull. Korean Math. Soc.* 54(2) (2017), 619–632.
- [8] D.H. Jin, Generic lightlike submanifolds of an indefinite Kaehler manifold with a nonmetric φ-symmetric connection, Commun. *Korean Math. Soc.* 32(4) (2017), 1047–1065.
- [9] S. Golab, On semi-symmetric and quarter-symmetric linear connections, *Tensor* (*N.S.*) 29(3) (1975), 249–254.
- [10] J. Sengupta and B. Biswas, Quarter-symmetric non-metric connection on a Sasakian manifold, *Bull. Calcutta Math. Soc.* 95(2) (2003), 169–176.
- [11] M. Ahmad, A. Haseeb, and C. Ozgur, Hypersurfaces of an almost rparacontact Riemannian manifold endowed with a quarter symmetric non-metric connection, *Kyungpook Math. J.* 49(3) (2009), 533–543.
- [12] U.-H. Ki, Y.-J. Suh, On real hypersurfaces of a complex space form, *Math. J. Okayama Univ.* 32 (1990), 207–221.
- [13] H. A. Hayden, Sub-Spaces of a Space with Torsion, *Proc. London Math. Soc.* 34(1) (1932), 27–50.
- [14] Y. Madea, On real hypersurfaces of a complex projective space, J. Math. Soc. Japan 28(1976), 529–540.
- [15] S. Montiel, Real hypersurfaces of a complex hyperbolic space, J. Math. Soc. Japan 37(3) (1985),3, 515–535.
- [16] D.H. Jin, Lightlike hypersurfaces of an indefinite Kahler manifold with a semi-symmetric non-metric connection, 54(2017), 101-115.

- [17] D.H. Jin, Special lightlike hypersurfaces of an indefinite Kaehler manifold, Filomat 30(7) (2016), 1919-1930.
- [18] Sushil Shukla, Real hypersurfaces of an almost hyperbolic Hermitian manifold, *Tamkang Journal of Mathematics*, 41(2010), 1, 71-83.
- [19] Sushil Shukla: On Relativistic Fluid Space Time Admitting Heat Flux of a Generalised recurrent and Ricci-recurrent Kenmotsu manifold, *Journal of International academy of Physical Sciences*, 15(2011),143-146.
- [20] Sushil Shukla, Totally umbilical lightlike hypersurfaces of Sasakian space form, *Stochastic Modelling and Applications*, 25(2)(2021), 137-147.

SUSHIL SHUKLA: Department of Mathematics, Faculty of Engineering and Technology, Veer Bahadur Singh Purvanchal University, Jaunpur 222001, India Email: sushilcws@gmail.com