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1. Introduction 

An (l, m)-type connection [1] is defined as linear connection with , T  holds  

      
( ) ( , ) { ( ) ( , ) ( ) ( , )}

{ ( )g( , ) ( )g( , )}

A g B C l B g A C C g A B

m B J A C C J A B

 

 

 = +

− +
                   (1.1)                                   

   
( , ) { ( ) ( ) )}

{ ( ) ( ), J )

T A B l B A A B

m B J A A B

 

 

= −

+ −
                                        (1.2) 

It is simple to calculate directly that   

    ( ){ }A AB B B lA m JA =  + + .                                                       (1.3) 

Description of Hopf hypersurfaces is discussed by magnitude of Hopf principal 

curvature. [16] [3] [5] [12] [14] [15]. 
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2. Lightlike hypersurfaces 

 Gauss Weingarten formula for M and S(TM) are  

                
( , ) .A AB B T A B N =  +                                             (2.1)                                

( ) ,A NN Q A A N = − +                                            (2.2)  

( , ) .A APB PB C A PB  =  +  (2.3) 

( ) .A Q A A   = − +                                               (2.4)        

 For U, V, we have 

U   =  -  J N,     V  =  J   ,   u(A) = g ( A, V  ) ,   v(A) = g (A, U).      (2.5) 

Operating J to vector field, A = SA + u(A)U 

             JA = FA + u(A)N,                                                                   (2.6) 

Again, operating J to (2.6) and with (1.2), (1.3), (2.5), we find 

             F 2A = A - u(A)U                                                                    (2.7) 

with (1.1), (1.2), (2.1), (2.7), we get
 

( ) ( ) ( ) ( ) ( )( )

{ ( ) ( , )

, C   T ,    ,  C B 

( ) ( , )} { ( ) ( , ) ( ) ( , )},

A C

l B g A C C

g B

g A B m B g J A C C g J

B

A

A B A

B

 

   

 −+

+ − +

=
(2.8) 

                                                         

( , ) { ( ) ( ) } { ( ) ( ) },T A B l B A A B m B FA A FB   = + + −                  (2.9)                                          

( ) ( ),  , { ( ) ( ) ( ) ( )}T T m B u A AA B B A u B − = −                          (2.10)      

where   is 1-form. 

Since T (A, B) = ( , )Ag B  , therefore, 

,   ,(  )  0  T A  =
                                                                                    (2.11)

 

Second fundamental forms are 

( ) *( ) ( ) (,    ,  B , ( , ) 0, (2 12)) .T Q A mu A BA B g g Q A N = + =
 

( ) ( ) ( ),  ,  , 0 ({ 2.13)( ) ( )} ,N NQ A l A mv A PB g Q AC A PB g PB N += =+

Replacing A by    in (2.12), we get 
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*

*

0,

( )A

Q

Q A A







  

=

 =− −
                                                                      (2.14)  

Operating  A  to F V and FV =− = ,  we have 

*

*

( ) ( ( ) , (2.15)

( ) ( ) . (2.16)

A A

A A

F V F Q A A V

F V F V Q A A





 

 

 = − + −

 = −  − −
 

Applying  A  to g (U, U) and g (V, V), we have 

( ) 0, ( ) 0.A Au U u V =  =                                                                     (2.17) 

3. Indefinite Cosympletic Manifold 

Let M be an almost contact manifold equipped with an almost contact metric 

structure ( , , , )g   [19] 

2 ( ) , ( , ) ( , ) ( ) , ( ), ( ) 1,J A A A g J A J B g A B A B     = − + = − =
(3.1) 

An almost contact metric structure is cosymplectic [14] if and only if 

both   and    vanish, where   is the covariant differentiation with 

respect to g. 
 

 0 0.d d = =                                                                       (3.2)          

By (3.1) and (3.2), we have  

( ) , ( , ) ( , ).A A A d A B g A JB    = − =                                      (3.3)                                                                                                                              

For two null vector field U, V,  

                       ,     .U JN V J=− =
                                                           

(3.4)
   

 

Vector A = SA + u (A)U with, 

( ) ( ) ( ) ( );  ,    .  ,u g A V v g A UA A= =                                  (3.5)                                                       

Operating J to (3.5), 

( )    ,JA FA u NA= +
                                                         

(3.6) 

operating A  in (3.4), (3.6) with (2.1), (2.4), (3.4), (3.6), we derive  

                ( ) ( ),   ,  ,B A U C A V=                                                                 (3.7) 
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                 ( ) ( )      ( ) ,A NQ AU F AA U  = + −                                        (3.8) 

                   ( )  ,( )) (A Q AV F V u AA  = − −                                          (3.9) 

( ) ( ) B   ,  (3.10)

(J , )

( )

( )F .

A NF u T A B U

g A B B

B Q A

A 

= −

+ −



 

Operating 
A  on ( , ) 0g   =  ( , ) 0g N =   and using (3.3), we obtain  

( ),  0, C( , ) ( ). (3.11)A A AT   = =  

Theorem 1: A cosympletic manifold with an indefinite structure, a lightlike 

hypersurface M and its transversal connection with parallel F, is flat. 

Proof: For parallel F, (3.10), yields 

( ) ( , ) U 0. (3.12 )NB Q A T A Bu − =  

Replacing A by U and B by V, we have 0. =  Therefore M  is flat manifold. 

Replacing B by U in (3.12), gives 

   ( ) .A (3.13)N UQ A=  

Scalar product with V to (3.12), yields 

                        ( ) ( ), u (B .)AT B A=  

Equivalently 
* , )  g( ( V( ) , ).g Q A B A B =  

Since both 
*Q A  and V belong to non-degenerate S(TM), hence we get 

( )*    . (3.1 )A 4Q A V =  

With (3.13), (3.14), (2.10) gives 0. = =  Hence 

( , ) { ( ) ( ) ( ) ( )} ( ) U 0.R A B C B A A B u C   = − =  

 Giving M flat. 

With (3.13), (3.8)  FU = 0, gives ( )    A AU U=  

With this and [ , ]  0 ,A B B A A BU U U    − − =  we have 0.d =   

4. Hopf lightlike hypersurfaces 

A Hopf lightlike hypersurface is a lightlike hypersurface with smooth function f 

such that [16] 
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*Q U fU =                                                                   (4.1) 

(4.1) with scalar product with A and (3.5), gives, 

                       

( , ) f ( ),

( , ) f ( ),

( ) f ( ).

T A U A

C A V A

A A





 

=

=

=

                                                      (4.2) 

Lie recurrent F defined as [17]  

                       (
AL F)  B  =   (A)  FB.                                                 (4.3)        

      Equivalently 

                (
AL F) B    =    [  A, FB ] - F [ A,   B ]                                   (4.4) 

  If (
AL F) = 0, then F is Lie parallel. 

Theorem 2: On Lie recurrent indefinite cosympletic manifold with ζ as tangent to 

M, F is Lie parallel. 

Proof: Since   is torsion free hence by (4.3) and (4.4), we get 

         
( )

( ) .

A FB BF B A F A

A FB

 = − 

+
                                                     (4.5) 

Equation (2.16), (4.5) with B = V, yields  

*( ) { ( ) ( )} .A VA F V A Q A A A     =−  − − − +                                (4.6) 

Again comparing (2.15) with (4.5), and replacing B by  , we get  

( ) 0, ( ) 0. (4.7)A V A Vu V A V A − =  − =  

Applying F in (4.5) and with (2.7), (4.7), (4.6), we obtain 0. = Hence F is Lie 

parallel. 

Definition: A cosympletic manifold is cosympletic space form if 

  

( 3)
( , ) { ( , ) ( , ) }

4

( 1)
{ ( , ) ( , )

4

2 ( , ) ( ) ( ) ( ) ( )

( , ) ( ) ( , ) ( ) .

c
R A B C g B C A g A C B

c
g A JC JB g B JC JA

g A JB JC A C B B C A

g A C B g B C A

   

   

−
= −

+
+ −

+ + −

+ −

(4.8) 

With (1.2), (1.3) and (2.2), we obtain 
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( , ) ( , ) ( ) ( ){ ( }

( )( ){ ( } ( ){( )

( ) ( ) ) ( ) )

m [ ( ) J ( ) J ] 2m g( , J ) }.

A

B

R A B C R A B C C l B mJB

C l A mJA C Al B

Bl A Am JB B m JA

B A A B A B



 

  

= +  +

−  + +

− + −

− − −

       (4.9) 

Scalar product of this with  and N and with (3.2), (3.7), (4.1), (4.2), (4.8) we 

obtain 

     

( , ) ( , ) { ( ) l ( )} ( , )

{ ( ) l ( )} ( , )

{ ( ) (F , ) ( ) ( F , )}

m{( ) ( ) ( ) ( ) ( ) ( )

( ) {[ m m (X)]u( ) [ ( )]u( )}

( 1)
{ ( ) ( , J ) ( ) ( , J )

4

2{ ( ) g( , )}.

A B

BA

T B C T A C A A T B C

B B T A C

m A T B C B T A C

C u B C u A

C A B Bm m B A

c
u B g A C u A g B C

u C A JB

 

 

 

 

  

 − + −

− −

− −

−  − 

− + − +

+
= −

+

               (4.10) 

         Applying A  in ( ) 0 ( ) 0U and  = = and using (2.14), we have 

*( ) ( ), ( ) ( ).A AAU U Q A     =−   =−                                         (4.11) 

Theorem 3: For indefinite cosympletic manifold M  with Hopf lightlike 

hypersurface M, 1c= . 

Proof: Taking A= U (4.6) and with (4.3), (4.4), we get 

* .U Q U  =−                                                                                      (4.12) 

Taking scalar product with  , we get  

*( ) ( ).U Q U   =−  

Comparing with (2.10), we have  

*( ) ( ) 0, ( , ) , ( , ) 0.U Q U T U m T U     = = = =                              (4.13) 

Scalar product of U to (4.12) with (2.17), yields 

( , ) 0.T U U =                                                                             (4.14) 

Operating   in (4.14) and using (2.10), (2.12), (4.12) with (4.13), we get 
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* *( )( , ) 2 ( , ).T U U g Q U Q U   =                                                        (4.15) 

Applying U  to ( , )T U  and with (2.4), (2.10) to (2.12), (4.13), we get 

* *( )( , ) ( , ).UT U g Q U Q U  =                                                         (4.16) 

Replacing A by ,  B and C by U in (4.10) and with (2.11), (4.11), (4.13), (4.15), 

(4.16), we get  

* * 1
( , ) 3 .

4

c
g Q U Q U 

− 
=  

 
 

As M is Hopf lightlike hypersurface so 
*Q U U = , hence 

* *( , ) 0.g Q U Q U  =  

Therefore 
1

0.
4

c −
=  Hence 1c= . 

Acknowledgement  

This work is financially supported by Minor research Project grant of VBS 

Purvanchal University Jaunpur Letter No.: 133/ Puo Vio Vio /IQAC/2022 Dated: 

23/03/2022.  

References 

[1] D.H. Jin. Lightlike hypersurfaces of an indefinite transSasakian manifold with 

an (l, m)-type connection, J. Korean Math. Soc., 55(5) ( 2018) 1075-

1089. 

[2] N.S. Ageshe, M.R. Chafle. A semi-symmetric non-metric connection on a 

Riemannian manifold, Indian J. Pure Appl. Math., 23(6)( 1992) 399-409. 

[3] H. Anciaux, K. Panagiotidou, Hopf hypersurfaces in pseudo-Riemannian 

complex and para-complex space form, Differential Geometry and its 

Applications 42 (2015), 1–14. 

[4] D.H. Jin Lightlike hypersurfaces of an indefinite Kaehler manifold with a semi-

symmetric non-metric connection, J. Korean Math. Soc. 54(1) (2017), 

101–115.  

[5] T. Cecil, P. Ryan, Focal sets and real hypersurfaces in complex projective 



SUSHIL SHUKLA 

132 

 

space, Trans. Amer.Math. Soc. 269 (1982), 481–499. 

[6] D.H. Jin, Lightlike hypersurfaces of an indefinite trans-Sasakian manifold with 

a nonmetric φ-symmetric connection, Bull. Korean Math. Soc. 53(6) 

(2016), 1771–1783.  

[7] D.H. Jin, Lightlike hypersurfaces of an indefinite Kaehler manifold with a non-

metric φ-symmetric connection, Bull. Korean Math. Soc. 54(2) (2017), 

619–632. 

[8] D.H. Jin, Generic lightlike submanifolds of an indefinite Kaehler manifold with 

a nonmetric φ-symmetric connection, Commun. Korean Math. Soc. 32(4) 

(2017), 1047– 1065.  

[9] S. Golab, On semi-symmetric and quarter-symmetric linear connections, Tensor 

(N.S.) 29(3) (1975), 249–254.  

[10]  J. Sengupta and B. Biswas, Quarter-symmetric non-metric connection on a 

Sasakian manifold, Bull. Calcutta Math. Soc. 95(2) (2003), 169–176.  

[11] M. Ahmad, A. Haseeb, and C. Ozgur, Hypersurfaces of an almost r-

paracontact Riemannian manifold endowed with a quarter symmetric 

non-metric connection, Kyungpook Math. J. 49(3) (2009),  533–543.  

[12] U.-H. Ki, Y.-J. Suh, On real hypersurfaces of a complex space form, Math. J. 

Okayama Univ. 32 (1990), 207–221. 

[13] H. A. Hayden, Sub-Spaces of a Space with Torsion, Proc. London Math. Soc. 

34(1) (1932), 27–50.  

[14] Y. Madea, On real hypersurfaces of a complex projective space, J. Math. Soc. 

Japan 28(1976), 529–540.  

[15] S. Montiel, Real hypersurfaces of a complex hyperbolic space, J. Math. Soc. 

Japan 37(3) (1985),3, 515–535. 

[16] D.H. Jin, Lightlike hypersurfaces of an indefinite Kahler manifold with a 

semi-symmetric non-metric connection, 54(2017), 101-115. 



SUSHIL SHUKLA 

133 

 

[17] D.H. Jin, Special lightlike hypersurfaces of an indefinite Kaehler manifold, 

Filomat 30(7) (2016), 1919-1930. 

[18] Sushil Shukla, Real hypersurfaces of an almost hyperbolic Hermitian 

manifold, Tamkang Journal of Mathematics, 41(2010), 1, 71-83. 

[19] Sushil Shukla: On Relativistic Fluid Space Time Admitting Heat Flux of a 

Generalised recurrent and Ricci-recurrent Kenmotsu manifold, Journal of 

International academy of Physical Sciences,15(2011),143-146. 

[20] Sushil Shukla, Totally umbilical lightlike hypersurfaces of Sasakian space 

form, Stochastic Modelling and Applications, 25(2)(2021), 137-147. 

 

 

SUSHIL SHUKLA: Department of Mathematics, Faculty of Engineering and 
Technology, Veer Bahadur Singh Purvanchal University, Jaunpur 222001, India 

Email: sushilcws@gmail.com 


