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Abstract. The Minimum degree energy Em(G) of a graph G is defined as

the sum of the absolute values of the eigenvalues of the minimum degree
matrix m(G). The minimum degree Laplacian matrix of G is defined L(G) =

D(G)−m(G), where D(G) is a diagonal matrix of vertex degrees.In this paper

we establish some inequalities for minimum degree Laplacian eigenvalues of
a graph G.

1. Introduction

The study of spectral graph theory, in essence is concerned with the relationship
between the algebraic properties of the spectra of certain matrices associated with
a graph, such as the Adjacency matrix, the Distance matrix, the Laplacian matrix
and other related matrix.
Let G be a graph(assumed simple throughout) with n vertices {v1, v2, . . . , vn} and
m edges and let di be the degree of vi, i = 1, 2, 3, . . . , n. Define

dij =

{
min{di, dj} if vi and vj are adjacent,
0 otherwise.

Then the n × n matrix m(G) = (dij) is called the minimum degree matrix of G.
The characteristic polynomial of the minimum degree matrix m(G) is defined by

φ(G;µ) = det(µI −m(G))

= µn + c1µ
n−1 + c2µ

n−2 + · · ·+ cn−1µ+ cn,

where I is the unit matrix of order n. The co-efficient ci(i = 0, 1, 2) are c0 = 1,
c1 = trace of m(G) = 0 and c2 = −

∑n
i=1(ai + bi)d

2
i , where ai = the number of

vertices in the neighborhood of vi whose degrees are greater than di
and bi = the number of vertices vj(j > i) in the neighborhood of vi whose degrees
are equal to di.
Note that c2 and c′2 are negative and so −c2 = |c2| , −c′2 = |c′2| .

The minimum degree eigenvalues µ1, µ2, . . . , µn of the graph G are the eigenval-
ues of its minimum degree matrix m(G). The minimum degree energy of a graph
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G is defined as

Em(G) =

n∑
i=1

|µi|. (1.1)

Since m(G) is real symmetric matrix with zero trace, these minimum degree eigen-
values are all real with sum equal to zero.

Equation 1.1 was introduced by the author[13] and was conceived in full analogy
to the ordinary graph energy E(G) defined as

E(G) =

n∑
i=1

|λi|

where λ1, λ2, . . . , λn are eigenvalues of the adjacency matrix of G [4]. The largest
eigenvalue λ1 of the graph G is often called the Spectral radius of G. In literature
there are several upper bounds for the spectral radius λ1(see, e.g.,[9, 3, 15, 14])
Let D(G) be the diagonal matrix of vertex degrees. The minimum degree Lapla-
cian matrix of G is L(G) = D(G) − m(G), where m(G) is the minimum degree
matrix of G. Clearly L(G) is a real symmetric matrix. The characteristic polyno-
mial of the minimum degree Laplacian matrix of G is defined by

φ(G; γ) = det(γI − L(G))

= γn + c′1γ
n−1 + c′2γ

n−2 + · · ·+ c′n−1γ+ c′n,

where I is the unit matrix of order n. The eigenvalues of L(G) are called minimum
degree Laplacian eigenvalues of G and are denoted by γ1 ≥ γ2 ≥ · · · ≥ γn. Note

that

n∑
i=1

γi = 2m and

n∑
i=1

γ2i = 2 |c′2| +
n∑

i=1

d2i , where di is the degree of vi. In

many applications one needs good bounds of the largest laplacian eigenvalues (see
for instance, [10, 11, 12] ).
In Section 2, we obtain several upper bounds for minimum degree laplacian eigen-
values of G.

2. Bounds for minimum degree laplacian eigenvalues

In this section, we obtain some inequalities involving the minimum degree lapla-
cian eigenvalues of a graph.

Theorem 2.1. Let G and H be two graphs with n vertices. If µ1, µ2, . . . , µn are
the minimum degree eigenvalues of G and γ1, γ2, . . . , γn are the minimum degree
Laplacian eigenvalues of H. Then

n∑
i=1

µiγi ≤

√√√√2 |c2|

(
2 |c′2|+

n∑
i=1

d2i

)
,

where c2 is the coefficient of µn−2 in the characteristic polynomial of the mini-
mum degree matrix m(G) and c′2 is the coefficient of γn−2 in the characteristic
polynomial of the Laplacian matrix of H
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Proof. By Cauchy-schwarz inequality, we have(
n∑

i=1

µiγi

)2

≤

(
n∑

i=1

µ2
i

)(
n∑

i=1

γ2i

)

≤ 2 |c2|

(
n∑

i=1

d2i + 2 |c′2|

)
.

Hence,

n∑
i=1

µiγi ≤

√√√√2 |c2|

(
2 |c′2|+

n∑
i=1

d2i

)
. (2.1)

�

Theorem 2.2. If G is a graph with n vertices and γ1, γ2, . . . , γn are the minimum
degree Laplacian eigenvalues of G, then

γ1 ≤
1

p− 1


√√√√p(p− 1)

[
2 |c′2|+

n∑
i=1

d2i

]
+

p∑
i=1

γn−p+i

 , 2 ≤ p ≤ n.

Proof. Let γ1, γ2, . . . , γn, 2 ≤ p ≤ n be the minimum degree Laplacian eigenvalues
of G. Let H = Kp

⋃
Kn−p. The minimum degree eigenvalues of H are (p − 1)2,

0(n-p times) and −(p− 1) (p-1 times).
Now on employing Theorem 2.1 we obtain,

γ1(p− 1)2 − (p− 1)

p∑
i=2

γn−p+i ≤

√√√√p(p− 1)3

[
2 |c′2|+

n∑
i=1

d2i

]
.

Hence,

γ1 ≤
1

p− 1


√√√√p(p− 1)

[
2 |c′2|+

n∑
i=1

d2i

]
+

p∑
i=2

γn−p+i

 . (2.2)

Remark 2.1 Setting p = 2, in (2.2) we obtain

γ1 − γn ≤

√√√√2

[
2 |c′2|+

n∑
i=1

d2i

]
.

�

Corollary 2.1 If G is a graph with n vertices and m edges, then

γ1 ≤
1

n


√√√√n(n− 1)

[
2 |c′2|+

n∑
i=1

d2i

]
+ 2m

 .
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Proof. If we put p = n, in (2.2) we get

γ1 ≤
1

n− 1


√√√√n(n− 1)

[
2 |c′2|+

n∑
i=1

d2i

]
+

n∑
i=2

γi

 .

Since
n∑

i=1

γi = 2m,

we have

γ1 ≤
1

n− 1


√√√√n(n− 1)

[
2 |c′2|+

n∑
i=1

d2i

]
+ (2m− γ1)


and hence,

γ1 ≤
1

n


√√√√n(n− 1)

[
2 |c′2|+

n∑
i=1

d2i

]
+ 2m

 .

Theorem 2.3. Let G be a graph with n vertices. If γ1 ≥ γ2 ≥ · · · ≥ γn are the
minimum degree Laplacian eigenvalues of G, then

k∑
i=1

γi ≤
k

n


√√√√n(n− k)

k

[
2 |c′2|+

n∑
i=1

d2i

]
+ 2m

 , 1 ≤ k ≤ n.

Proof. Let γ1, γ2, . . . , γk, γk+1, . . . , γn be the minimum degree Laplacian eigenval-

ues of G. Let H be the union of k complete graphs Kp. i.e., H =
⋃
k

Kp. The

minimum degree eigenvalues of H are (p − 1)2 (k times) and −(p − 1) [(p-1)k

times] and number of vertices and edges of H are n = pk and kp(p−1)
2 respectively.

Now on employing Theorem 2.1, we get

(p−1)2γ1+· · ·+(p−1)2γk−(p−1)γk+1−· · ·−(p−1)γn ≤

√√√√kp(p− 1)3

[
2 |c′2|+

n∑
i=1

d2i

]

i.e., p
k∑

i=1

γi−
n∑

i=1

γi ≤

√√√√kp(p− 1)

[
2 |c′2|+

n∑
i=1

d2i

]
.

Since

n = pk and

n∑
i=1

γi = 2m,

we have,
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k∑
i=1

γi ≤
k

n


√√√√n(n− k)

k

[
2 |c′2|+

n∑
i=1

d2i

]
+ 2m

 . (2.3)

�

Remark 2.2 Taking k = 1, in (2.3) we see that

γ1 ≤
1

n


√√√√n(n− 1)

[
2 |c′2|+

n∑
i=1

d2i

]
+ 2m

 .

Theorem 2.4. Let G be a graph with n vertices. If γ1 ≥ γ2 ≥ · · · ≥ γn are the
minimum degree Laplacian eigenvalues of G, then

k∑
i=1

[γi − γp−k+i] ≤

√√√√k

[
2 |c′2|+

n∑
i=1

d2i

]
, 1 ≤ k ≤

[n
2

]
.

Proof. Let γ1 ≥ γ2 ≥ . . . ≥ γk ≥ γk+1 ≥ . . . ≥ γn−k ≥ γn−k+1 ≥ . . . ≥ γn be the
minimum degree Laplacian eigenvalues of G. Let H be a graph with n vertices and

k components each is complete bipartite graph Kp,q i.e., H =
⋃
k

Kp,q.

The minimum degree eigenvalues of H are p
√
pq [k times], 0[(n-2k) times] and

−p√pq [k times] and the number of vertices and edges of H are n = k(p+ q) and
kpq respectively.
On employing Theorem 2.1, we get

p
√
pq

k∑
i=1

γi − p
√
pq

k∑
i=1

γn−k+i ≤

√√√√kp3q

[
2 |c′2|+

n∑
i=1

d2i

]
.

Thus,

k∑
i=1

[γi − γp−k+i] ≤

√√√√k

[
2 |c′2|+

n∑
i=1

d2i

]
. (2.4)

�
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