

SOME FIXED POINT THEOREMS IN GENERATING POLISH SPACE OF QUASI METRIC FAMILY

ARJUN KUMAR MEHRA AND MANOJ KUMAR SHUKLA

Abstract: The generating space of quasi metric family is important because of its involvement with fuzzy and probabilistic metric space. Mathematical Classification (2000) – 49H10, 54H25.

1. Introduction and Preliminary

The generating space of quasi 2-metric family is important because of its involvement with fuzzy and probabilistic 2-metric space and a minimization theorem [1], [3] is to obtain fixed point theorem. In 2008 V.B. Dhagat and V.S. Thakur proved non convex minimization theorem for generating space of quasi 2-metric family. In this paper, we prove a minimization theorem for sequence of mappings Ta for $a \in \mathbb{N}$ and further we prove fixed point theorem as an application of minimization theorem with non commuting condition Known as weak compatible.

1.1. Definitions.

1.1.1. Generating Polish Space of Quasi Metric Family. Let X be non empty set and $\{d_{\alpha}: \alpha \in (0,1]\}$ be a family of mappings d_{α} of $(\Omega \times X) \times (\Omega \times X)$ into \mathbb{R}^+ , $\omega \in \Omega$ be a selector. (X, $d_{\alpha}: \alpha \in (0, 1]$) is called generating Polish space of quasi metric family if it satisfies the following conditions:

- 1. $d_{\alpha}((\omega, x), (\omega, y)) = 0 \forall \alpha \in (0, 1] \Leftrightarrow x = y$
- 2. $d_{\alpha}((\omega, x), (\omega, y)) = d_{\alpha}((\omega, y), (\omega, x)) \forall x, y \in \mathbf{X}, \omega \in \Omega \text{ and } \alpha \in (0, 1]$
- 3. For any $\alpha \in (0, 1]$, there exists a number $\mu \in (0, \alpha]$ such that: $d_{\alpha}((\omega, x), (\omega, y)) = d_{\mu}((\omega, x), (\omega, z)) + d_{\mu}((\omega, z), (\omega, y)) \forall x, y \in \mathbf{X}, \omega \in \Omega$ be a selector.
- 4. For any $x, y \in X$, $\omega \in \Omega$, $d_{\alpha}((\omega, x), (\omega, y))$ is non-increasing and left continuous in α .

1.1.2. Quasi Compatible. Let $(X, d_{\alpha}: \alpha \in (0, 1])$ be a generating Polish space of quasi metric family and S and T be mappings from $\Omega \times X$ into X. The mapping S and T are said to be quasi compatible if

$$\begin{split} & d_{\alpha}(\mathrm{ST}(\varpi,\,x_n),\,\mathrm{TS}(\varpi,\,x_n)) \to 0 \text{ as } n \to \infty,\, \alpha \in (0,\,1],\, \varpi \in \Omega \\ \text{whenever } \{\varpi,\,x_n\} \text{ be a sequence in } \Omega \times \mathrm{X} \text{ such that } \lim_{n \to \infty} \mathrm{S}(\varpi,\,x_n) = \lim_{n \to \infty} \mathrm{T}(\varpi,\,x_n) = p \\ \text{for some } p \in \mathrm{X}. \end{split}$$

Keyword. Fixed point, Quasi 2-metric family, Generating polish Space.

1.1.3. Compatible of Type (A). Let $(X, d_{\alpha}: \alpha \in (0, 1])$ be a generating Polish space of quasi metric family and S and T be mappings from $\Omega \times X$ into X. The mapping S and T are said to be compatible of type (A) if:

 $d_{\alpha}(\mathrm{TS}(\omega, x_n), \mathrm{SS}(\omega, x_n)) = 0 \text{ and } d_{\alpha}(\mathrm{ST}(\omega, x_n), \mathrm{TT}(\omega, x_n)) = 0$

whenever $\{\omega, x_n\}$ be a sequence in $\Omega \times X$ such that $\lim_{n \to \infty} S(\omega, x_n) = \lim_{n \to \infty} T(\omega, x_n) = p$ for some $n \in X$

for some $p \in \mathbf{X}$

1.1.4. Implicit Relation. Let ϕ be the set of all real functions ϕ : $R^4_+ \rightarrow R$ such that:

- (F₁): Φ is continuous in each coordinate variable,
- (F₂): If either $\phi(u, 0, u, v) \leq 0$ or $\phi(u, 0, u + v, v) \leq 0$ for all $u, v \geq 0$, then there exists a real constant $0 \leq h \leq 1$ such that $u \leq hv$.

2. Some Concerning Results

Lemma 2.1: Let $(X, d_{\alpha}: \alpha \in (0, 1])$ be a generating Polish space of quasi metric family and S and T be mappings from $\Omega \times X$ into X. Suppose that

$$\lim_{n \to \infty} \mathbf{S}(\mathbf{\omega}, x_n) = \lim_{n \to \infty} \mathbf{T}(\mathbf{\omega}, x_n) = p \text{ for some } p \in \mathbf{X}.$$

Then we have the following

- 1. $\lim_{n \to \infty} \operatorname{ST}(\omega, x_n) = \operatorname{T} p$ if T is continuous and
- 2. STp = TSp and Sp = Tp if T is continuous

Proof 2.1(1): Suppose that

$$\lim_{n \to \infty} \mathbf{S}(\mathbf{\omega}, x_n) = \lim_{n \to \infty} \mathbf{T}(\mathbf{\omega}, x_n) = p \text{ for some } p \in \mathbf{X}.$$

Now, since T is continuous, we have

$$\lim_{n \to \infty} \mathrm{TS}(\boldsymbol{\omega}, x_n) = \mathrm{T}p$$

By 1.1.1(3), we have

 $d_{\alpha}(ST(\omega, x_n), Tp) = d_{\mu}(ST(\omega, x_n), TS(\omega, x_n)) + d_{\mu}(TS(\omega, x_n), Tp); \mu \in (0, \alpha]$ Since S and T are quasi compatible, we have

$$\lim_{n \to \infty} \operatorname{ST}(\boldsymbol{\omega}, x_n) = \mathrm{T} p$$

Proof 2.1(2): Since T is continuous,

$$\lim_{n \to \infty} \operatorname{ST}(\boldsymbol{\omega}, x_n) = \operatorname{T} p$$

Hence by uniqueness of limit, we have Sp = TpNow again $d_{\alpha}(STp, TSp) = \lim_{n \to \infty} d_{\alpha}(ST(\boldsymbol{\omega}, x_n), TS(\boldsymbol{\omega}, x_n)) = 0$ i.e. STp = TSp

This completes the proof.

Lemma 2.2: Let $(X, d_{\alpha}: \alpha \in (0, 1])$ be a generating Polish space of quasi metric family and S and T be mappings from $\Omega \times X$ into X. If S_i and T_j are weakly compatible for any $\alpha \in (0, 1]$ and for $\mu \in (0, \alpha]$.

Then, $S_i T_j p = T_j T_j p = T_j S_i p = S_i S_i p$

Proof: Suppose $\{\omega, x_n\}$ be a sequence in $\Omega \times X$ defined by $x_n = p$ as $n \to \infty$ and Sp = Tp.

Then we have

$$\lim_{n \to \infty} \mathbf{S}(\boldsymbol{\omega}, x_n) = \lim_{n \to \infty} \mathbf{T}(\boldsymbol{\omega}, x_n) = p$$

Since S and T have weakly compatible), we have

$$d_{\alpha}(\mathrm{ST}p, \mathrm{TT}p) = \lim_{n \to \infty} d_{\alpha}(\mathrm{ST}(\boldsymbol{\omega}, x_n), \mathrm{TT}(\boldsymbol{\omega}, x_n)) = 0; \boldsymbol{\alpha} \in (0, 1]$$

Hence, we have, STp = TTp

Similarly, we have, TSp = SSp

But, Tp = Sp

It implies, TTp = TSp

Therefore, STp = TTp = TSp = SSp

3. Main Results

Theorem 3.1: Let, $(X, d_{\alpha}: \alpha \in (0, 1])$ be a Generating Polish space of quasi metric family and S, T & G are mapping from $\Omega \times X \to X$ are continuous random operator w.r.t. *d*. Suppose there are some $\alpha \in (0, 1]$ such that for $x, y \in X$ and $\xi \in \Omega$, we have the following conditions

1.
$$S(X) \subseteq G(X)$$
 and $T(X) \subseteq G(X)$
2. $\phi \left\{ \begin{aligned} d_{\alpha} \left(S(\boldsymbol{\omega}, x), T(\boldsymbol{\omega}, y) \right), d_{\alpha} \left(S(\boldsymbol{\omega}, x), G(\boldsymbol{\omega}, y) \right), \\ d_{\alpha} \left(G(\boldsymbol{\omega}, x), T(\boldsymbol{\omega}, y) \right), d_{\alpha} \left(G(\boldsymbol{\omega}, x), G(\boldsymbol{\omega}, y) \right) \end{aligned} \right\} \leq 0$
 $\forall x, y \in X \text{ and } \alpha \in (0, 1],$

(3) G is continuous

(4) The pairs $\{S, G\}$ and $\{T, G\}$ are weakly compatible on X.

Then S, T and G have common fixed point.

Proof:

Let, x_0 be any arbitrary point of X.

Since, $S(X) \subseteq G(X)$ and $T(X) \subseteq G(X)$ and $SG(X) \subseteq GG(X)$ and $TG(X) \subseteq GG(X)$

So there exists x_1 and x_2 in X such that

$$GG(\omega, x_1) = SG(\omega, x_0)$$
 and $GG(\omega, x_2) = TG(\omega, x_1)$

In general

 $GG(\omega, x_{2n+1}) = SG(\omega, x_{2n}) \text{ and } GG(\omega, x_{2n+2}) = TG(\omega, x_{2n+1})$ for, n = 0, 1, 2, 3, ...

Let,

$$d_n = d_{\alpha}(\mathrm{GG}(\omega, x_n), \, \mathrm{GG}(\omega, x_{n+1}))$$

Also we know

$$\begin{split} d_{\alpha}(\mathrm{GG}(\boldsymbol{\omega},\,x_{2n}),\,\mathrm{GG}(\boldsymbol{\omega},\,x_{2n+2})) &\leq \begin{cases} d_{\mu}(\mathrm{GG}(\boldsymbol{\omega},\,x_{2n}),\,\mathrm{GG}(\boldsymbol{\omega},\,x_{2n+1})) \\ + \,d_{\mu}(\mathrm{GG}(\boldsymbol{\omega},\,x_{2n+1}),\,\mathrm{GG}(\boldsymbol{\omega},\,x_{2n+2})) \end{cases} \\ &\quad \forall x,\,y\in\mathrm{X} \text{ and } \mu\in(0,\,\alpha], \end{split}$$

Suppose x_{2n} , x_{2n+1} satisfy 3.1(2) then $\forall \alpha \in (0, 1]$

$$\phi \begin{cases} d_{\alpha} \left(\operatorname{SG} \left(\omega, x_{2n} \right), \operatorname{TG} \left(\omega, x_{2n+1} \right) \right), d_{\alpha} \left(\operatorname{SG} \left(\omega, x_{2n} \right), \operatorname{GG} \left(\omega, x_{2n+1} \right) \right), \\ d_{\alpha} \left(\operatorname{GG} \left(\omega, x_{2n} \right), \operatorname{TG} \left(\omega, x_{2n+1} \right) \right), d_{\alpha} \left(\operatorname{GG} \left(\omega, x_{2n} \right), \operatorname{GG} \left(\omega, x_{2n+1} \right) \right) \right) \end{cases} \\ \leq 0 \end{cases}$$

$$\phi \begin{cases} d_{\alpha} \left(\operatorname{GG} \left(\omega, x_{2n+1} \right), \operatorname{GG} \left(\omega, x_{2n+2} \right) \right), d_{\alpha} \left(\operatorname{GG} \left(\omega, x_{2n} \right), \operatorname{GG} \left(\omega, x_{2n+1} \right) \right), \\ d_{\alpha} \left(\operatorname{GG} \left(\omega, x_{2n} \right), \operatorname{GG} \left(\omega, x_{2n+2} \right) \right), d_{\alpha} \left(\operatorname{GG} \left(\omega, x_{2n} \right), \operatorname{GG} \left(\omega, x_{2n+1} \right) \right) \right) \end{cases} \\ \leq 0 \end{cases}$$

$$\phi \begin{cases} d_{\alpha} \left(\operatorname{GG} \left(\omega, x_{2n+1} \right), \operatorname{GG} \left(\omega, x_{2n+2} \right) \right), d_{\alpha} \left(\operatorname{GG} \left(\omega, x_{2n} \right), \operatorname{GG} \left(\omega, x_{2n+1} \right) \right) \end{cases} \\ \leq 0 \end{cases}$$

$$\phi \begin{cases} d_{\alpha} \left(\operatorname{GG} \left(\omega, x_{2n+1} \right), \operatorname{GG} \left(\omega, x_{2n+2} \right) \right), 0, \left[d_{\mu} \left(\operatorname{GG} \left(\omega, x_{2n} \right), \operatorname{GG} \left(\omega, x_{2n+1} \right) \right) \right] \\ + d_{\mu} \left(\operatorname{GG} \left(\omega, x_{2n+1} \right), \operatorname{GG} \left(\omega, x_{2n+2} \right) \right) \end{bmatrix}, d_{\alpha} \left(\operatorname{GG} \left(\omega, x_{2n} \right), \operatorname{GG} \left(\omega, x_{2n+1} \right) \right) \end{cases} \end{cases}$$

Thus by definition of implicit relation 1.1.3 we have

$$\begin{aligned} d_{\alpha}(\text{GG}(\boldsymbol{\omega}, \, x_{2n+1}), \, \text{GG}(\boldsymbol{\omega}, \, x_{2n+2})) &\leq h\{d_{\alpha}(\text{GG}(\boldsymbol{\omega}, \, x_{2n}), \, \text{GG}(\boldsymbol{\omega}, \, x_{2n+1}))\} \\ & d_{2n+1} \leq hd_{2n} \\ d_{2n+1} \leq d_{2n} \\ \text{ilarly}, & d_{2n} \leq hd_{2n+1} \end{aligned}$$

Sim

Thus, $\{d_{2n}\}$ be monotone decreasing and hence converge to zero.

Therefore, $\{GG(\omega, x_{2n})\}$ is a Cauchy sequence and converge to Gp and hence to point X.

Since $\{SG(\omega, x_{2n})\}\$ and $\{TG(\omega, x_{2n})\}\$ are subsequence of $\{GG(\omega, x_{2n})\}\$ and so converge to same point p.

Now by lemma 2.1 we obtain

	SGp = GSp and Sp = Gp
Similarly,	TGp = GTp and $Tp = Gp$
Hence,	Sp = Tp = Gp
Also,	$\mathbf{S}p = p = \mathbf{G}p = \mathbf{T}p$ as $\mathbf{G}p = p$
тт •	

Hence, p is common fixed point of S, T and G.

This completes the proof.

Corollary 3.2: Let, $(X, d_{\alpha}: \alpha \in (0, 1])$ be a generating Polish space of quasi metric family and S, T and G be mappings from $\Omega \times X$ into X satisfying

1.
$$S(X) \subseteq G(X)$$
 and $T(X) \subseteq G(X)$
2. $\phi \begin{cases} d_{\alpha} (S(\omega, x), T(\omega, y)), d_{\alpha} (S(\omega, x), G(\omega, y)), \\ d_{\alpha} (G(\omega, x), T(\omega, y)), d_{\alpha} (G(\omega, x), G(\omega, y)) \end{cases} \leq 0$

 $\forall x, y \in \mathbf{X} \text{ and } \alpha \in (0, 1],$

- 3. G is continuous
- 4. The pairs {S, G} and {T, G} are weakly compatible Then S, T and G have common fixed point.

Proof: Similar to the proof of the theorem 3.1 using the fact that Quasi compatible pair of maps is weakly compatible but converse is not always true.

References

- D. Downing and W.A. Kirk, A generalization of Caristi's theorem with applications to nonlinear mapping theory, Pacific j. Math. 69(1977), No. 2, 339-346.
- V.B. Dhagat and V.S. Thakur, Non convex minimization in generating space, Tamkang Journal of Math, Taiwan Vol. 39, No. 3, 213-218, Autumn 2008.
- J.S. Jung, Y.J. Cho and J.K. Kim, Minimization theorems for fixed point theorems in fuzzy metric space and application, Fuzzy sets and system 61(2), (1994), 199-207.

Arjun Kumar Mehra: Research Scholor, Rani Durgavati Vishwavidyalaya, Jabalpur, (MP), India *E-mail address:* Marjunmehral1111@gmail.com

MANOJ KUMAR SHUKLA: DEPARTMENT OF MATHEMATICS, INSTITUTE FOR EXCELLENCE IN HIGHER EDUCATION, BHOPAL (MP)

E-mail address: manojshukla2012@yahoo.com