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PRIME PERFECT IDEALS IN SEMINEARRINGS

KEDUKODI BABUSHRI SRINIVAS, KAVITHA KOPPULA* AND KUNCHAM SYAM
PRASAD

ABsTrACT. In this paper, we define different prime perfect ideals of a right
seminearring M and corresponding prime radicals. Then prove the relation-
ship between prime ideals and are illustrated with the suitable examples.
Further, we prove that, if P.(M) is the intersection of equiprime perfect
ideals of M, then P. = {M | P.(M) = M} is a Kurosh-Amitsur radical class.
In addition, we prove results on c-prime perfect ideals and corresponding
radicals.

1. Introduction

A seminearring is an algebraic system which forms a semigroup with respect
to the binary operations multiplication (‘) and addition (‘4’) satisfies one of the
(right or left) distributive law. Hoorn and Rootsellar [12] considered the kernel of a
seminearring homomorphism is the ideal of a seminearring. By using this ideal def-
inition, different types of prime ideals in seminearrings are defined by Javed [1, 2].
The concept of equiprime ideal of a nearing was defined by Booth, Gronewald and
Veldsman [4]. Then they proved that in nearrings, if the equiprime radical is an
intersection of all equiprime ideals, it will lead to a KA (Kurosh-Amitsur) radical
class. Subsequently, Veldsman [13] explained the equiprimeness in nearrings and
the relationship with various types of primeness in nearrings. Completely prime
radical is defined and explained that in the class of all non-zero nearrings without
divisors of zero it coincides with the upper radical by Groenewald [7]. The rela-
tionship between different types of prime ideals and prime radicals in nearrings
was discussed by Birkenmeier, Heatherly and Lee [3].

In the present paper, we define various prime perfect ideals and radicals in sem-
inearrings. Koppula, Kedukodi and Kuncham [9] defined strong ideal of a semin-
earring. Later, prime strong ideals, corresponding radicals in seminearrings were
defined and related results were obtained. Further, Koppula, Kedukodi and Kun-
cham [8] defined the concept of perfect ideal of a seminearring and proved the
standard isomorphism theorems. The two concepts perfect and strong ideal of a
seminearring coincides in nearrings and rings. In this paper, we provide an exam-
ple of perfect ideal of a seminearring, which is not a strong ideal. Then we define
various prime perfect ideals of seminearrings and prime radicals in seminearrings.
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Further, we proved results related to KA radical class. In addition, we obtain
results on c-prime ideals and corresponding radicals.

2. Preliminaries

In the present section, we provide basic definitions and results which are useful
to obtain the present manuscript results.

Definition 2.1. [12] An algebraic structure (M, +, ) is said to be a right semin-
earring, if the below mentioned conditions are satisfied.

(1) M is a semigroup with respect to addition.

(2) M is a semigroup with respect to multiplication.

(3) (mq +mg)ms = myms + mamg for all my, ma,mz € M.

(4) m+0=0+m =m for all m € M.

(5) Om =0 for all m € M.
In the present paper, all seminearrings are considered as right seminearrings and
M denotes a right seminearring.

The following definition is actually defined for semirings (Golan[6]) and now, it
is adopted for seminearrings.

Definition 2.2. Let E be any non-empty subset of M. For my, ms € M,
m1 = mo implies there exist ai,as € F such that mq + a1 = ms + ao.

Definition 2.3. [8] Let ¢ # E be a subset of M. Then E is a perfect ideal of M,
if the below mentioned conditions hold.

(1) For ej,es € E, e1 +e2 € E.

(2) Forme M, E+mCm+E.

(3) If m; g= mso then m; € mo + E, where my,ms € M.

(4) Em C E for all m € M.

(5) m(m’ + E) Cmm/ + E for all m,m' € M.

In condition 3 of the Definition 2.3,
If my = 0 then we have, if m; ;= 0 then m; € FE.
If m; =0 and mo = 0 then we have, if 0 g= 0 then 0 € E.
In the following, seminearring homomorphism means seminearring perfect homo-
morphism [8].

Proposition 2.4. [8] If E is a perfect ideal of M then ¢ : M — M/FE is an onto
seminearring homomorphism.

If #: M — R is an onto seminearring homomorphism, then ker 7 is a perfect
ideal of M.

Theorem 2.5. [8] If E and F' are perfect ideals of M then E N F is a perfect
ideal of F and (E+ F)/E= F/(ENF).

Theorem 2.6. [8] If F and F are perfect ideals of M and F C F' then

Definitions 2.7, 2.8, 2.9, 2.10 and 2.11 are redefined for seminearrings from the
original nearring definitions (Pilz[11]).
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Definition 2.7. The constant part of a seminearring M is
M.={m e M | mm' =m, for all m' € M}.

Definition 2.8. The zero-symmetric part of a seminearring M is
My = {m € M | m0 = 0}.

Definition 2.9. Let F be any nonempty subset of a semigroup (M, +). Then F
is said to be a subsemigroup of M, if my,ms € F then m; +mo € E.

Definition 2.10. Let M be a seminearring and E be an additive subsemigroup
of M. Then F said to be a subseminearring of M, if 0 € E and FE C F.

Definition 2.11. Let M be a seminearring and E be a subseminearring of M.
Then E is said to be left invariant (right invariant, respectively) if EM C E (
ME C E, respectively). If E is both right and left invariant, then E is said to be
invariant.

The following Definitions are actually defined for rings and are taken from the
Gardner and Weigandt[5]. Now, we redefined them for seminearrings.

In the following, n denotes the class of seminearrings.

Definition 2.12. [5] The class 7 is said to be an hereditary, if M € n and E is
an ideal of M then E € n.

Definition 2.13. [5] A class of seminearrings 7 is said to be regular, if 0 # E is
an ideal of M and M € 7 implies that E—F # 0 (E has a non-zero homomorphic
image F') such that F € 1.

From the above two definitions, it is clear that hereditary implies regularity.

Definition 2.14. [5] Let E be an ideal of a seminearring M. Then FE is said to
be an essential ideal of M if there exists an ideal 0 # F of M such that ENF # 0
and is denoted by F <-M.

The following definition is taken from Booth[4] and now, we redefined it for
seminearrings.

Definition 2.15. [9] Let M be a seminearring. Then M is said to be an equiprime
if
(1) V0 7’5 my,mo € M, miMmsy 75 (O)
(2) If (0) # T is any invariant subsemigroup of M and my,ms € M then
tmy = tmso,V t € T implies m; = ms.

3. Prime perfect ideals

In this section, we define prime perfect ideals of seminearring and identified the
relationship among the prime perfect ideals. These ideals are explained with the
suitable examples.

Remark 3.1. From the Definition 2.3, the following conditions hold.

(1) E4+mCm+Eem+E=FE+m+FE
(2) m(m'+ E)+ E=mm'+ E< m(m'+ E) Cmm' + E for all m,m’ € M.
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Proof. 1. First, we assume that £ +m C m+ FE, for all m € M.

Let m € M be arbitrarily fixed. Now, take z € E+m + E.

Then z = e; + m + eg, for some e1,es € E. As E+m C m + FE, there exists
es € E such that z = (e1 +m) + ea = (m + e3) + e2 € m + E. Clearly, we have
m+ECFE+m+FE. . Hencem+FE=FE+m+ FE.

Now, we assume that m+ FE =FE +m+ E. Let y € E + m.

Then y = e+ m, for some e € E. By using the given condition, there exists e5 € F
suchthat y=e+m+0=m+es € m+ E.

2. First, we assume that m(m’ + E) C mm/ + E, for all m,m’ € M.

Let m, m' € M be arbitrarily fixed. Now, take y € m(m’ + E) + E.

This implies there exist a1, as € F such that y = m(m’ + ay) + as.

By using the given condition, there exists ag € E such that

y=m(m' +a1) +as = (mm' + a3z) + ay € mm’ + E.

Clearly, we get mm’ + E C m(m’' + E) + E.

Now, take z € m(m’ + E). Then there exists e € E such that

z=m(m' +e)+0=mm'+¢e € mm'+ E for some ¢ € E. O

Definition 3.2. A perfect ideal E of M is said to be a c-prime perfect if mq,mo €
M with mims € E then either m; € E or ms € E.

Definition 3.3. A perfect ideal E of M is said to be a completely semiprime
perfect ideal if m € M with m™ € E (n is a positive integer) then m € E.

Definition 3.4. A perfect ideal F of M is said to be an equiprime perfect if
s,a,b € M with sma g= smb¥ m € M then either s € E or a g=b.

Definition 3.5. A perfect ideal E of M is said to be a 3-prime perfect if s,t € M
with smt € E VY m € M then either s€ Fort € E.

Example 3.6. Let M = {0,m,ma, m3} be a set with respect to + and - are
defined as mentioned in the following tables.

+ 0 my | Mo | T3 0 my | ™Mo | T3
0 0 my | Mo | M3 0 0 0 0 0
my | My 0 ma | M3 my 0 0 my | My
mo | Mo | TM3 | TMo | T3 mo 0 0 mo | Mo
ms | m3 | Mz | T | T3 ms 0 0 ms | ms3

Then M is a seminearring. Now, take F = {0,m1}. Then E is a perfect ideal
of M.
Now, ma + {0,m1} = {ma, ms}.
{0,m1} + ma = my. Therefore mo + {0,m1} € {0,m1} + mo. Hence E is not a
strong ideal of M.
The perfect ideal E partitions M into the equivalence classes as
O/E = ml/E = {O,m1}, mg/E = m3/E = {mg,m?,}.
In addition, F is a c-prime, 3-prime and an equiprime perfect ideal of M.

Proposition 3.7. If F is an equiprime perfect ideal of M then M, C E.
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Proof. Let a € M.. Then aa’ =a V o’ € M. Now, take b € M.

Then aa’b+ 0 =aad’0+ 0V o € M. This implies aa’b g= aad’0V o’ € M.

As FE is an equiprime perfect ideal, we get a € E or b g= 0.

This gives a € F or b € E. If F is a proper perfect ideal then b € E is a contra-
diction. Therefore a € E. Thus M. C E. O

Theorem 3.8. If E is an equiprime perfect ideal of M then F is a 3-prime perfect
ideal.

Proof. Let x,y € M be such that xmy € E for all m € M.

If z € E, then F is a 3-prime perfect.

Suppose x ¢ E. As M. C E, we have zm0 € E for all m € M.

Now, fix m € M. Then zmy € xm0 + E. This gives xmy g= zm0.

Asm € M is arbitrary, we have xmy g= tm0V m € M. Because E is an equiprime
perfect and = ¢ F, we get y =g 0= y € E.

Thus FE is a 3-prime . ]

Here we provide an example to show that every 3-prime perfect ideal need not
be equiprime perfect.

Example 3.9. Let M = {0, m1, ma,m3} be a set with respect to + and - defined
as follows:

+ 0 mq | M2 | M3 0 my | Mo | M3
0 0 my | Mo | M3 0 0 0 0 0
myp |my | my | My | M3 my |my | my | my | m
™Mo | Mo | M1 0 ms Mmoo | o | Mo | T2 | TNo
mg | mg | M3 | m3|ms mg | mg | Mg | m3 | M3

Then M is a seminearring and E = {0, ma} is a 3-prime, c-prime perfect ideal
of M. However, E is not an equiprime perfect ideal of M. Because miymmg=
mymme Ym € M, but a ¢ E and mig# mao.

Proposition 3.10. If E and F are perfect ideals of M such that z + (ENF) =
(x+ E)N(x+ F) for all x € M then E N F is a perfect ideal of M.

In the following sections, we consider that, if £ and F' are perfect ideals of M
thenz+ (ENF)=(x+E)N(z+F)Vze M.

4. Kurosh-Amitsur prime radical

Here we redefined the Kurosh-Amitsur radical class for seminearrings and it is
actually taken from [5].
In the following, E is considered as a perfect ideal of a seminearring M.

Definition 4.1. 7 is said to be a KA radical class if the below mentioned condi-
tions are satisfied.

(1) n is homomorphically closed.
(2) n(M)=%(E<M | E€n)isinn, for every seminearring M.
(3) For every seminearring M, n(M/n(M)) = 0.
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Proposition 4.2. If the class 7 satisfies conditions 1. and 2. of the Definition
4.1, then 3. is equivalent to:

3. If E is a perfect ideal of the seminearring M and FE, M/E € n then M € n
(closed under extensions).

Proof. Suppose that the class 7 satisfies condition 3.
Now, take seminearrings E, M/FE from n. Then by 2, we have E C n(M). By using
M/E  ~

Isomorphism theorem, we getm = M/n(M). As M/E € n, by condition 1.

we get % € 7. Again by condition 1., we have M/n(M) € 7.

Then M/n(M) =n(M/n(M)) =0 (by 3). This implies M = n(M) € n. Therefore
M € 7. For the converse, we assume that 3. holds and n(M/n(M)) # 0.

Then there exists a perfect ideal F//n(M) € n of M/n(M) such that F/n(M) # 0.
As n(M) and F/n(M) are from 7, then by 3. we get F € 1.

Therefore by 2., we have F' C n(M). Then F = n(M). This implies F/n(M) = 0.
As this is a contradiction for n(M/n(M)) # 0, hence we get n(M/n(M))=0. O

Proposition 4.3. If 5 satisfies the conditions 1.(Definition 4.1) and 3. then the
condition 2. (Definition 4.1) is equivalent to 2., which is defined as follows.

2.If B, C By C --- C E, C --- is an ascending chain of perfect ideals of a
seminearring S, if each E, is in 7 then UE, is also in n (n has the inductive
property).

Proof. Suppose that the condition 2. holds. Now, take G = UE,,.

As each E, € n, we have each E, C n(G) = X{E, <G | E, € n}.

Hence G = UE, C n(G). Then by condition 2. we get G = n(G) is in .

Suppose that 2. holds. Then by using Zorn’s lemma, there exists a maximal n-ideal
G of M. Now, take H is any other n-ideal of M.

Then, we have (G+ H)/H 2 G/(GN H).

Because G — G/(G N H) is an onto homomorphism, G € 7, then by condition 1.,
we have G/(G N H) is in 1. Again by condition 1., we have (G + H)/H is in 7.
Therefore by condition 3, G + H € 7. Because G is maximal perfect ideal, we get
G + H is G. This implies n(M) C G. Thus n(M) = G is in 7. O

Theorem 4.4. The class 7 is a radical class iff the below conditions hold.

(1) n is homomorphically closed
2.If By CEyC---CE, C--- is an ascending chain of perfect ideals of a
seminearring S, if each E, is in 7, then UE, is also in 5 (n has inductive
property).
3. If E is a perfect ideal of the seminearring M and E, M/E € 7 then
M en.
(n is closed under extensions).

Theorem 4.5. If 7 is a class of seminearrings, then the following statements are
equivalent.

(I). nis a radical class.
(IT). (A) If M is in n then for M —>G # 0 there exists a perfect ideal H of G
such that 0 # H € 1.
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(B) For M —>G # 0 there is a perfect ideal H of G such that 0 # H € g
then M € 7.
(III). 7 satisfies II(A), has the inductive property and is closed under extensions.

Proof. First we show that (I) implies (III). Let M be in 1.

Then for any M — G # 0 onto homomorphism, we have 0 # G € .

This implies 0 # G = n(G) € 7. Therefore 7 satisfies II(A) and by Theorem 4.4, n
has the inductive property and is closed under extensions.

Now, we will show that (III) implies (II). It is sufficient to prove that 7 satisfies
II(B). Suppose that M is in n and for any onto homomorphism M — G # 0, H is
a perfect ideal of G such that 0 # H € n, then M is not in 7.

By Zorn’s lemma there exists a maximal ideal E of M, as n has inductive property,
we get E € n. This implies M/E # 0. Because M/E # 0 is a homomorphic image
of M, then by II(A) there exists an ideal F//E of M/E such that 0 # F/E € n.
As E € n and F/E € 5, by inductive property we get F € 1. Which is a contra-
diction for F is a maximal ideal. Hence M € 7.

Now, we show that (II) implies (I). Let M € n and G be a nonzero homomorphic
image of M. Then we show that G € . Now, take H is a homomorphic image of
G. Then by II(A), there exists an ideal V' of H such that 0 #V € n.

Now, by II(B), we get G € . Therefore 7 is homomorphically closed.

Now, take £ C E5 C --- C E, C --- is an ascending chain of ideals of 7, each
E, € n. Then we prove that UE,, is in 7.

Let UE,/F be a nonzero seminearring. Then there exists an index « such that
E, ¢ F. This implies 0 # (E, + F)/F and we know that (E, + F)/F is an ideal
of UE,/F. As E, € n, the homomorphic image of E, is E,/FE, N F in 7.

As Eng >~ Eoatl wo get Lotl ¢ 5. Now, we have UE, — UE,/F # 0 is an
onto homomorphism and the ideal of UE,/F is 0 # (E, + F)/F €.

Then by II(B), we get UE,, is in 7. Thus 1 has the inductive property.

Now, take E and M/E are in 1. Then we show that M € 7.

Let M/F be a nonzero seminearring.

Case(i): If E C F. Then % is a homomorphic image of M/E. As M/E € n, we
get % € 7. Then by Isomorphism theorem we get, M/F € n.

Hence by II(A) there exists an ideal 0 # K/F of M/F such that K/F € .
Case(ii): If E ¢ F. Then 0 # (E+ F)/F is an ideal of M/F. As E is in 1), we have
E/ENF isin n and we know that E/(ENF) = (E+F)/F. Hence (E+F)/F €.
In two cases 0 # M/F has a non-zero ideal in 7. Hence by II(B), we get M € .

Therefore 7 is closed under extensions. O

Theorem 4.6. If 5 is regular, then Un = {M | M—>N # 0 such that N ¢ n} is
a radical class.

In the following, the class of c—prime seminearrings is denoted by 7., the class
of equiprime seminearrings by 7. and the class of 3-prime seminearrings by 75.

Definition 4.7. The equiprime radical is P,(M) = "{E<M | M/E € n.}, 3-

prime radical is P{(M) =N{E<M | M/E € n}} and c-prime radical is P.(M) =
N{E<aM | M/E € n.}.
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Proposition 4.8. [9] The class of equiprime seminearrings 7. is hereditary on
invariant subsemigroups. Particularly, the class 7. is hereditary.

Definition 4.9. Let E be a perfect ideal of F, F' is a left invariant perfect ideal
of M and F/E € 1, my,mo € M. Then 7 is said to satisty U],

(1) If (mim)/E = (mgm)/E, ¥ m € F, then m; € mg + E.

(2) If (mmq)/E = (mmg)/E, ¥ m € F, then my € mg + E.

Proposition 4.10. If F is a perfect ideal of M and left invariant such that
F/E € n and n satisfies the condition U7, then E is a perfect ideal of M.

Proof. Clearly, x +y € E,¥V x,y € E. Now, take y € E+m; + F.
Then there exist e1,es € E such that y = e; +mq + es.
Let m € F. Then ym = (e; + m1 + ea)m = eym + mym + eam. As F is a perfect
ideal of F| there exists ez € F such that e;m + mim + eom = mym + e3.
That is, ym/E = mym/E. Then by Definition 4.9(1), we get y € my + E.
This implies E+m1 + ECm;+E. As0O€ E, wehave my + EC E+my + E.
Hence we get E+m; + E =my + E.
Let x g= y. Then there exist e1,eq € E such that x +e; =y + es.
Let m € F. Then (z +e1)m = (y + e2)m
= Trm+ejm = ym + eam.
=am-+tes=ym+ey [egm =e3 € E,eam = ey € E.
=am/E =ym/E.
As m is arbitrary, we have am/E = ym/E, Vm € F. Then by Definition 4.9(1),
we get x € y + E. Now, we will prove that Em; C E,¥Y m; € M.
Let y € Emy. Then y = am;, for some a € E. Now, take m € F.
Then (ami)m = a(mim) € aF C E = (amy)m = ez + Om, for some ey € E.
This gives (amq)m/E = om/E. Then by Definition 4.9(1), we get am, € E.
Now, we show that my(s'+ E) + E=m s’ + E, V. my,s € M.
Let a,e; € E and m € F. Suppose we assume that (m1(s’ +a))m/E # m1s'm/E.
Now, take z € F. Then x((m1(s’ + a))m) = z(myi(s'm + am)) = xzss'm + eq, for
some ep € E. This implies z((m1(s’ + a))m)/E = x(m1s'm)/E.
As this is a contradiction for (mi(s’+a))m/E # mis'm/E, hence we get (m(s’+
a))m/E = (mys'm)/E, ¥ m € F.
Then by Definition 4.9(1), we get m1(s' +a) € mys’ + E.
This implies m1(s’ + E) + E = mqs’ + E. Thus FE is a perfect ideal of M.

(I

Proposition 4.11. If F' is a perfect ideal of M and left invariant such that
F/E € n and the class n satisfies the condition U7, then (E : F))s is a perfect
ideal of M.

Proof. By Proposition 4.10, we have E is a perfect ideal of M.

Now, take my,mq € (E : F)ps. Then mi F C E and moF C E.

This implies m1 F +moF C E+ E = E. That is, (m; +mg)F C E.

Hence my +mg € (E: F)yy.

Let z€ (E: F)p + 2+ (E : F)p. Then there exist mq, mg € (E : F)j such that
z =mq + x + mo. Now, take m € F.

Then zm = (m1+x+ma)m = mym-+xm—+maom. As E is a perfect ideal of F, there
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exists mgs € E such that mi;m + xm + maom = xm + mgs. That is, zm/E = xm/E.
As m € F is arbitrary, we have zm/E = am/E, ¥V m € F.

Then by Definition 4.9(1), we get z €z + E Caz+ (E: F)y.

Hence (E:F)y+z+ (E:F)y =2+ (E: F)u.

Let z € (¢’ + (E : F)p) + (E : F)p. Then there exist mq, mg € (E : F)p such
that z = z(2’ + m1) + ma. Now, take m € F.

Then zm = (x(z’' + m1) + ma)m = z(z' + m1)m +mam = x(z'm + mim) + mam.
As F is an ideal of M, there exist a; € E such that x(z'm + mim) + mom =
xx’'m + ay. This implies zm/E = za'm/E.

Then by Definition 4.9(1), we get z € 2’ + E C za’ + (E : F)u.

Hence (2’ + (E: F)y) + (E: F)yy = ax’ + (E: F)yy.

Let © =(p:.r),, ¥- Then there exist y1,y> € (E : F)ps such that z +y; =y + yo.
Now, take m € F. Then (x + y1)m = (y + y2)m.

= am+yym =ym+yom = xm/E = ym/E.

Then by Definition 4.9(1), we get x € E C (E : F) .

Now, we will prove that (E: F)yy M C (E: F)y. Let z € (E: F)y M.

Then there exists y € (E : F)y and m € M such that z = ym.

Then zF = (ym)F = y(mF) CyF C E. Hence z € (E : F) .

Thus (E : F))y is a perfect ideal of M. O

Proposition 4.12. If the class 7, satisfies the condition U] and F is a left invariant
perfect ideal of the seminearring M and E/F € 7., then (F : E) is an equiprime
perfect ideal of M.

Proof. By Proposition 4.11, we have (F : E)); is a perfect ideal of M.

Now, take my,mo € M such that my,mg ¢ (F : E) .

Then mia ¢ F and mab ¢ F, for some a,b € E.

As F is an equiprime perfect ideal of E, we have mjaEmab ¢ F.

Hence miEy ¢ (F : E)r.

Now, take T is any invariant subsemigroup of M > (F : E)p C T.

Now, take mq,mo € M such that am,/(F : E)y = ame/(F : E)py YV a€T.
Then there exist fi, fo € (F : E)p such that amy + f1 = amg + fo

= (am1 + fl)d = (amg + fz)d Vde FE

= amid + frd = amod + + fod

= amid/F = amqd/F.

As F C(F : E)y C T, F is an equiprime perfect ideal of E and a(m1d)/F =
a(meod)/F, we get mid/F = mod/F ¥V d € E.

Then by Definition 4.9(1), we get m; € mo + F Cy+ (F: E) .

Hence my/(F : E)p = mo/(F : E) .

Then by the Definition 2.15, we have (F : E)js is an equiprime perfect ideal of
M. (I

Lemma 4.13. If the class 7. satisfies the condition U] and F <-M such that
ME CE,Eecn.and 0#a €S, then aF # 0 and Ea # 0.

By Proposition 4.8, we have 7, is hereditary. Then by Proposition 4.6, we get
Un, is a KA radical class.

Theorem 4.14. Un. = P, = {S | S is a seminearring such that P.(S) = S}.
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Theorem 4.15. Un, = P, = {M | M is a seminearring such that P.(M) = M}.

Proof. Let M € Un.. Then M—>N # 0 such that N ¢ n.. This means M has no
non-zero completely prime ideals. This implies M = P/(M). Therefore Un. C P..
Now, take M € P.. Then M = P/(M)). This implies M has no nonzero c-prime
perfect ideals of M.

Hence M € Un.. Thus we get Un, = P.. (]

Proposition 4.16. If F is an essential ideal of a seminearring M, M is zero-
symmetric and the class 7. satisfies condition U{, E € 7. then M € 7. (7. is closed
under essential extensions).

Proof. From Proposition 4.11, we have (0: E)jy = {s € M | sE = 0} is a perfect
ideal of M. Now, ((0: E)yy NE)?> C(0: E)E = (0).

As (0: E)yy NE is an ideal of E and E € 7., we get (0: E)p N E = (0).
Because E is an essential ideal of M, then we get (0 : E)yr = (0).

Now, take my,my € M such that mq,my # 0.

As (0: E)p = (0), there exists z,y € E such that myz # 0 and moy # 0.
Suppose that xmy = 0. Then mizmi;z = m0x = 0. As E € n., we get myx = 0.
Which is a contradiction to the assumption zm; = 0.

Therefore xm; # 0. Then we get (zmq)(may) # 0.

This gives mimsg # 0. Thus M € n.. O

Proposition 4.17. If F is a completely semiprime perfect ideal of M and left
invariant, x,y € M, then the following conditions hold.

(1) If 2y € E then yzx € E.
(2) If xy € E and a € M then zay € E.

Proof. 1. Let (yz)? € E. Then (yz)? = (yz)(yz) = y(ay)z. As vy € E, there
exists i1 € E such that y(zy)z = y(i1z) = yis € E. As E is completely semiprime,
we get yr € F.

2. Now, (zay)? = (zay)(zay) = za(yxr)ay = xaijay (From 1.), for some i; € E.
As E is left invariant, we get (zay)? € E. Because E is completely semiprime, we
get zay € L. d

Proposition 4.18. If M is an equiprime seminearring then ma = my, V. m € M
implies x = y.

Proof. Suppose that mz = my, ¥V m € M. This implies xmz = zmy, V m € M.
As M is an equiprime seminearring, we get x = 0 or x = y.

If z # y then xmx = xmy, V m € M implies x = 0 and ymx = ymy, Vm € M
implies y = 0, which is a contradiction. Therefore x = y. O
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