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Abstract. In this paper, we de�ne di�erent prime perfect ideals of a right
seminearring M and corresponding prime radicals. Then prove the relation-
ship between prime ideals and are illustrated with the suitable examples.
Further, we prove that, if Pe(M) is the intersection of equiprime perfect
ideals of M, then Pe = {M | Pe(M) = M} is a Kurosh-Amitsur radical class.
In addition, we prove results on c-prime perfect ideals and corresponding
radicals.

1. Introduction

A seminearring is an algebraic system which forms a semigroup with respect
to the binary operations multiplication (`·') and addition (`+') satis�es one of the
(right or left) distributive law. Hoorn and Rootsellar [12] considered the kernel of a
seminearring homomorphism is the ideal of a seminearring. By using this ideal def-
inition, di�erent types of prime ideals in seminearrings are de�ned by Javed [1, 2].
The concept of equiprime ideal of a nearing was de�ned by Booth, Gronewald and
Veldsman [4]. Then they proved that in nearrings, if the equiprime radical is an
intersection of all equiprime ideals, it will lead to a KA (Kurosh-Amitsur) radical
class. Subsequently, Veldsman [13] explained the equiprimeness in nearrings and
the relationship with various types of primeness in nearrings. Completely prime
radical is de�ned and explained that in the class of all non-zero nearrings without
divisors of zero it coincides with the upper radical by Groenewald [7]. The rela-
tionship between di�erent types of prime ideals and prime radicals in nearrings
was discussed by Birkenmeier, Heatherly and Lee [3].
In the present paper, we de�ne various prime perfect ideals and radicals in sem-
inearrings. Koppula, Kedukodi and Kuncham [9] de�ned strong ideal of a semin-
earring. Later, prime strong ideals, corresponding radicals in seminearrings were
de�ned and related results were obtained. Further, Koppula, Kedukodi and Kun-
cham [8] de�ned the concept of perfect ideal of a seminearring and proved the
standard isomorphism theorems. The two concepts perfect and strong ideal of a
seminearring coincides in nearrings and rings. In this paper, we provide an exam-
ple of perfect ideal of a seminearring, which is not a strong ideal. Then we de�ne
various prime perfect ideals of seminearrings and prime radicals in seminearrings.
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Further, we proved results related to KA radical class. In addition, we obtain
results on c-prime ideals and corresponding radicals.

2. Preliminaries

In the present section, we provide basic de�nitions and results which are useful
to obtain the present manuscript results.

De�nition 2.1. [12] An algebraic structure (M,+, ·) is said to be a right semin-
earring, if the below mentioned conditions are satis�ed.

(1) M is a semigroup with respect to addition.
(2) M is a semigroup with respect to multiplication.
(3) (m1 +m2)m3 = m1m3 +m2m3 for all m1,m2,m3 ∈M.
(4) m+ 0 = 0 +m = m for all m ∈M.
(5) 0m = 0 for all m ∈M.

In the present paper, all seminearrings are considered as right seminearrings and
M denotes a right seminearring.

The following de�nition is actually de�ned for semirings (Golan[6]) and now, it
is adopted for seminearrings.

De�nition 2.2. Let E be any non-empty subset of M. For m1,m2 ∈M,
m1 E≡ m2 implies there exist a1, a2 ∈ E such that m1 + a1 = m2 + a2.

De�nition 2.3. [8] Let ϕ ̸= E be a subset of M. Then E is a perfect ideal of M,
if the below mentioned conditions hold.

(1) For e1, e2 ∈ E, e1 + e2 ∈ E.
(2) For m ∈M, E +m ⊆ m+ E.
(3) If m1 E≡ m2 then m1 ∈ m2 + E, where m1,m2 ∈M.
(4) Em ⊆ E for all m ∈M .
(5) m(m′ + E) ⊆ mm′ + E for all m,m′ ∈M .

In condition 3 of the De�nition 2.3,
If m2 = 0 then we have, if m1 I≡ 0 then m1 ∈ E.
If m1 = 0 and m2 = 0 then we have, if 0 E≡ 0 then 0 ∈ E.
In the following, seminearring homomorphism means seminearring perfect homo-
morphism [8].

Proposition 2.4. [8] If E is a perfect ideal of M then ψ :M →M/E is an onto
seminearring homomorphism.
If π : M → R is an onto seminearring homomorphism, then ker π is a perfect
ideal of M.

Theorem 2.5. [8] If E and F are perfect ideals of M then E ∩ F is a perfect
ideal of F and (E + F )/E ∼= F/(E ∩ F ).

Theorem 2.6. [8] If E and F are perfect ideals of M and E ⊆ F then
M/F ∼= (M/E)/(F/E).

De�nitions 2.7, 2.8, 2.9, 2.10 and 2.11 are rede�ned for seminearrings from the
original nearring de�nitions (Pilz[11]).
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De�nition 2.7. The constant part of a seminearring M is
Mc = {m ∈M | mm′ = m, for all m′ ∈M}.

De�nition 2.8. The zero-symmetric part of a seminearring M is
M0 = {m ∈M | m0 = 0}.

De�nition 2.9. Let E be any nonempty subset of a semigroup (M,+). Then E
is said to be a subsemigroup of M, if m1,m2 ∈ E then m1 +m2 ∈ E.

De�nition 2.10. Let M be a seminearring and E be an additive subsemigroup
of M. Then E said to be a subseminearring of M , if 0 ∈ E and EE ⊆ E.

De�nition 2.11. Let M be a seminearring and E be a subseminearring of M.
Then E is said to be left invariant (right invariant, respectively) if EM ⊆ E (
ME ⊆ E, respectively). If E is both right and left invariant, then E is said to be
invariant.

The following De�nitions are actually de�ned for rings and are taken from the
Gardner and Weigandt[5]. Now, we rede�ned them for seminearrings.

In the following, η denotes the class of seminearrings.

De�nition 2.12. [5] The class η is said to be an hereditary, if M ∈ η and E is
an ideal of M then E ∈ η.

De�nition 2.13. [5] A class of seminearrings η is said to be regular, if 0 ̸= E is
an ideal of M and M ∈ η implies that E−▷F ̸= 0 (E has a non-zero homomorphic
image F ) such that F ∈ η.

From the above two de�nitions, it is clear that hereditary implies regularity.

De�nition 2.14. [5] Let E be an ideal of a seminearring M. Then E is said to
be an essential ideal of M if there exists an ideal 0 ̸= F of M such that E ∩F ̸= 0
and is denoted by E ◁ ·M.

The following de�nition is taken from Booth[4] and now, we rede�ned it for
seminearrings.

De�nition 2.15. [9] LetM be a seminearring. ThenM is said to be an equiprime
if

(1) ∀ 0 ̸= m1,m2 ∈M, m1Mm2 ̸= (0).
(2) If (0) ̸= T is any invariant subsemigroup of M and m1,m2 ∈ M then

tm1 = tm2,∀ t ∈ T implies m1 = m2.

3. Prime perfect ideals

In this section, we de�ne prime perfect ideals of seminearring and identi�ed the
relationship among the prime perfect ideals. These ideals are explained with the
suitable examples.

Remark 3.1. From the De�nition 2.3, the following conditions hold.

(1) E +m ⊆ m+ E ⇔ m+ E = E +m+ E
(2) m(m′ +E) +E = mm′ +E ⇔ m(m′ +E) ⊆ mm′ +E for all m,m′ ∈M .
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Proof. 1. First, we assume that E +m ⊆ m+ E, for all m ∈M.
Let m ∈M be arbitrarily �xed. Now, take z ∈ E +m+ E.
Then z = e1 + m + e2, for some e1, e2 ∈ E. As E + m ⊆ m + E, there exists
e3 ∈ E such that z = (e1 +m) + e2 = (m + e3) + e2 ∈ m + E. Clearly, we have
m+ E ⊆ E +m+ E. Hence m+ E = E +m+ E.
Now, we assume that m+ E = E +m+ E. Let y ∈ E +m.
Then y = e+m, for some e ∈ E. By using the given condition, there exists e5 ∈ E
such that y = e+m+ 0 = m+ e5 ∈ m+ E.
2. First, we assume that m(m′ + E) ⊆ mm′ + E, for all m,m′ ∈M.
Let m,m′ ∈M be arbitrarily �xed. Now, take y ∈ m(m′ + E) + E.
This implies there exist a1, a2 ∈ E such that y = m(m′ + a1) + a2.
By using the given condition, there exists a3 ∈ E such that
y = m(m′ + a1) + a2 = (mm′ + a3) + a2 ∈ mm′ + E.
Clearly, we get mm′ + E ⊆ m(m′ + E) + E.
Now, take z ∈ m(m′ + E). Then there exists e ∈ E such that
z = m(m′ + e) + 0 = mm′ + e′ ∈ mm′ + E for some e′ ∈ E. □

De�nition 3.2. A perfect ideal E ofM is said to be a c-prime perfect if m1,m2 ∈
M with m1m2 ∈ E then either m1 ∈ E or m2 ∈ E.

De�nition 3.3. A perfect ideal E of M is said to be a completely semiprime
perfect ideal if m ∈M with mn ∈ E (n is a positive integer) then m ∈ E.

De�nition 3.4. A perfect ideal E of M is said to be an equiprime perfect if
s, a, b ∈M with sma E≡ smb ∀ m ∈M then either s ∈ E or a E≡ b.

De�nition 3.5. A perfect ideal E of M is said to be a 3-prime perfect if s, t ∈M
with smt ∈ E ∀ m ∈M then either s ∈ E or t ∈ E.

Example 3.6. Let M = {0,m1,m2,m3} be a set with respect to + and · are
de�ned as mentioned in the following tables.

+ 0 m1 m2 m3

0 0 m1 m2 m3

m1 m1 0 m2 m3

m2 m2 m3 m2 m3

m3 m3 m2 m2 m3

. 0 m1 m2 m3

0 0 0 0 0
m1 0 0 m1 m1

m2 0 0 m2 m2

m3 0 0 m3 m3

Then M is a seminearring. Now, take E = {0,m1}. Then E is a perfect ideal
of M.
Now, m2 + {0,m1} = {m2,m3}.
{0,m1} +m2 = m2. Therefore m2 + {0,m1} ⊈ {0,m1} +m2. Hence E is not a
strong ideal of M.
The perfect ideal E partitions M into the equivalence classes as
0/E = m1/E = {0,m1}, m2/E = m3/E = {m2,m3}.
In addition, E is a c-prime, 3-prime and an equiprime perfect ideal of M.

Proposition 3.7. If E is an equiprime perfect ideal of M then Mc ⊆ E.
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Proof. Let a ∈Mc. Then aa
′ = a ∀ a′ ∈M. Now, take b ∈M.

Then aa′b+ 0 = aa′0 + 0 ∀ a′ ∈M. This implies aa′b E≡ aa′0 ∀ a′ ∈M.
As E is an equiprime perfect ideal, we get a ∈ E or b E≡ 0.
This gives a ∈ E or b ∈ E. If E is a proper perfect ideal then b ∈ E is a contra-
diction. Therefore a ∈ E. Thus Mc ⊆ E. □

Theorem 3.8. If E is an equiprime perfect ideal ofM then E is a 3-prime perfect
ideal.

Proof. Let x, y ∈M be such that xmy ∈ E for all m ∈M.
If x ∈ E, then E is a 3-prime perfect.
Suppose x /∈ E. As Mc ⊆ E, we have xm0 ∈ E for all m ∈M.
Now, �x m ∈M. Then xmy ∈ xm0 + E. This gives xmy E≡ xm0.
Asm ∈M is arbitrary, we have xmy E≡ xm0 ∀m ∈M. Because E is an equiprime
perfect and x /∈ E, we get y ≡E 0 ⇒ y ∈ E.
Thus E is a 3-prime . □

Here we provide an example to show that every 3-prime perfect ideal need not
be equiprime perfect.

Example 3.9. Let M = {0,m1,m2,m3} be a set with respect to + and · de�ned
as follows:

+ 0 m1 m2 m3

0 0 m1 m2 m3

m1 m1 m1 m1 m3

m2 m2 m1 0 m3

m3 m3 m3 m3 m3

. 0 m1 m2 m3

0 0 0 0 0
m1 m1 m1 m1 m1

m2 m2 m2 m2 m2

m3 m3 m3 m3 m3

Then M is a seminearring and E = {0,m2} is a 3-prime, c-prime perfect ideal
of M. However, E is not an equiprime perfect ideal of M. Because m1mm1E≡
m1mm2 ∀m ∈M, but a /∈ E and m1E ̸≡ m2.

Proposition 3.10. If E and F are perfect ideals of M such that x+ (E ∩ F ) =
(x+ E) ∩ (x+ F ) for all x ∈M then E ∩ F is a perfect ideal of M.

In the following sections, we consider that, if E and F are perfect ideals of M
then x+ (E ∩ F ) = (x+ E) ∩ (x+ F ) ∀ x ∈M.

4. Kurosh-Amitsur prime radical

Here we rede�ned the Kurosh-Amitsur radical class for seminearrings and it is
actually taken from [5].
In the following, E is considered as a perfect ideal of a seminearring M.

De�nition 4.1. η is said to be a KA radical class if the below mentioned condi-
tions are satis�ed.

(1) η is homomorphically closed.
(2) η(M) = Σ(E ◁M | E ∈ η) is in η, for every seminearring M.
(3) For every seminearring M, η(M/η(M)) = 0.
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Proposition 4.2. If the class η satis�es conditions 1. and 2. of the De�nition
4.1, then 3. is equivalent to:
3. If E is a perfect ideal of the seminearring M and E, M/E ∈ η then M ∈ η
(closed under extensions).

Proof. Suppose that the class η satis�es condition 3.
Now, take seminearrings E, M/E from η. Then by 2, we have E ⊆ η(M). By using

Isomorphism theorem, we get M/E
η(M)/E

∼= M/η(M). As M/E ∈ η, by condition 1.

we get M/E
η(M)/E ∈ η. Again by condition 1., we have M/η(M) ∈ η.

Then M/η(M) = η(M/η(M)) = 0 (by 3). This implies M = η(M) ∈ η. Therefore
M ∈ η. For the converse, we assume that 3. holds and η(M/η(M)) ̸= 0.
Then there exists a perfect ideal F/η(M) ∈ η of M/η(M) such that F/η(M) ̸= 0.
As η(M) and F/η(M) are from η, then by 3. we get F ∈ η.
Therefore by 2., we have F ⊆ η(M). Then F = η(M). This implies F/η(M) = 0.
As this is a contradiction for η(M/η(M)) ̸= 0, hence we get η(M/η(M)) = 0. □

Proposition 4.3. If η satis�es the conditions 1.(De�nition 4.1) and 3. then the
condition 2. (De�nition 4.1) is equivalent to 2., which is de�ned as follows.
2. If E1 ⊆ E2 ⊆ · · · ⊆ Eα ⊆ · · · is an ascending chain of perfect ideals of a
seminearring S, if each Eα is in η then ∪Eα is also in η (η has the inductive
property).

Proof. Suppose that the condition 2. holds. Now, take G = ∪Eα.
As each Eα ∈ η, we have each Eα ⊆ η(G) = Σ{Eα ◁ G | Eα ∈ η}.
Hence G = ∪Eα ⊆ η(G). Then by condition 2. we get G = η(G) is in η.
Suppose that 2. holds. Then by using Zorn's lemma, there exists a maximal η-ideal
G of M. Now, take H is any other η-ideal of M.
Then, we have (G+H)/H ∼= G/(G ∩H).
Because G→ G/(G ∩H) is an onto homomorphism, G ∈ η, then by condition 1.,
we have G/(G ∩H) is in η. Again by condition 1., we have (G+H)/H is in η.
Therefore by condition 3, G+H ∈ η. Because G is maximal perfect ideal, we get
G+H is G. This implies η(M) ⊆ G. Thus η(M) = G is in η. □

Theorem 4.4. The class η is a radical class i� the below conditions hold.

(1) η is homomorphically closed
2. If E1 ⊆ E2 ⊆ · · · ⊆ Eα ⊆ · · · is an ascending chain of perfect ideals of a

seminearring S, if each Eα is in η, then ∪Eα is also in η (η has inductive
property).

3. If E is a perfect ideal of the seminearring M and E, M/E ∈ η then
M ∈ η.

(η is closed under extensions).

Theorem 4.5. If η is a class of seminearrings, then the following statements are
equivalent.

(I). η is a radical class.
(II). (A) If M is in η then for M−▷G ̸= 0 there exists a perfect ideal H of G

such that 0 ̸= H ∈ η.
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(B) For M−▷G ̸= 0 there is a perfect ideal H of G such that 0 ̸= H ∈ η
then M ∈ η.

(III). η satis�es II(A), has the inductive property and is closed under extensions.

Proof. First we show that (I) implies (III). Let M be in η.
Then for any M → G ̸= 0 onto homomorphism, we have 0 ̸= G ∈ η.
This implies 0 ̸= G = η(G) ∈ η. Therefore η satis�es II(A) and by Theorem 4.4, η
has the inductive property and is closed under extensions.
Now, we will show that (III) implies (II). It is su�cient to prove that η satis�es
II(B). Suppose that M is in η and for any onto homomorphism M → G ̸= 0, H is
a perfect ideal of G such that 0 ̸= H ∈ η, then M is not in η.
By Zorn's lemma there exists a maximal ideal E ofM, as η has inductive property,
we get E ∈ η. This implies M/E ̸= 0. Because M/E ̸= 0 is a homomorphic image
of M, then by II(A) there exists an ideal F/E of M/E such that 0 ̸= F/E ∈ η.
As E ∈ η and F/E ∈ η, by inductive property we get F ∈ η. Which is a contra-
diction for E is a maximal ideal. Hence M ∈ η.
Now, we show that (II) implies (I). Let M ∈ η and G be a nonzero homomorphic
image of M. Then we show that G ∈ η. Now, take H is a homomorphic image of
G. Then by II(A), there exists an ideal V of H such that 0 ̸= V ∈ η.
Now, by II(B), we get G ∈ η. Therefore η is homomorphically closed.
Now, take E1 ⊆ E2 ⊆ · · · ⊆ Eα ⊆ · · · is an ascending chain of ideals of η, each
Eα ∈ η. Then we prove that ∪Eα is in η.
Let ∪Eα/F be a nonzero seminearring. Then there exists an index α such that
Eα ⊈ F. This implies 0 ̸= (Eα + F )/F and we know that (Eα + F )/F is an ideal
of ∪Eα/F. As Eα ∈ η, the homomorphic image of Eα is Eα/Eα ∩ F in η.
As Eα

Eα∩F
∼= Eα+F

F , we get Eα+F
F ∈ η. Now, we have ∪Eα → ∪Eα/F ̸= 0 is an

onto homomorphism and the ideal of ∪Eα/F is 0 ̸= (Eα + F )/F ∈ η.
Then by II(B), we get ∪Eα is in η. Thus η has the inductive property.
Now, take E and M/E are in η. Then we show that M ∈ η.
Let M/F be a nonzero seminearring.

Case(i): If E ⊆ F. Then M/E
F/E is a homomorphic image of M/E. As M/E ∈ η, we

get M/E
F/E ∈ η. Then by Isomorphism theorem we get, M/F ∈ η.

Hence by II(A) there exists an ideal 0 ̸= K/F of M/F such that K/F ∈ η.
Case(ii): If E ⊈ F. Then 0 ̸= (E+F )/F is an ideal of M/F. As E is in η, we have
E/E∩F is in η and we know that E/(E∩F ) ∼= (E+F )/F. Hence (E+F )/F ∈ η.
In two cases 0 ̸= M/F has a non-zero ideal in η. Hence by II(B), we get M ∈ η.
Therefore η is closed under extensions. □

Theorem 4.6. If η is regular, then Uη = {M | M−▷N ̸= 0 such that N /∈ η} is
a radical class.

In the following, the class of c−prime seminearrings is denoted by ηc, the class
of equiprime seminearrings by ηe and the class of 3-prime seminearrings by η′3.

De�nition 4.7. The equiprime radical is P ′
e(M) = ∩{E ◁ M | M/E ∈ ηe}, 3-

prime radical is P ′
3(M) = ∩{E ◁M | M/E ∈ η′3} and c-prime radical is P ′

c(M) =
∩{E ◁M |M/E ∈ ηc}.
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Proposition 4.8. [9] The class of equiprime seminearrings ηe is hereditary on
invariant subsemigroups. Particularly, the class ηe is hereditary.

De�nition 4.9. Let E be a perfect ideal of F, F is a left invariant perfect ideal
of M and F/E ∈ η, m1,m2 ∈M. Then η is said to satisfy U ′

1,

(1) If (m1m)/E = (m2m)/E, ∀ m ∈ F, then m1 ∈ m2 + E.
(2) If (mm1)/E = (mm2)/E, ∀ m ∈ F, then m1 ∈ m2 + E.

Proposition 4.10. If F is a perfect ideal of M and left invariant such that
F/E ∈ η and η satis�es the condition U ′

1, then E is a perfect ideal of M.

Proof. Clearly, x+ y ∈ E,∀ x, y ∈ E. Now, take y ∈ E +m1 + E.
Then there exist e1, e2 ∈ E such that y = e1 +m1 + e2.
Let m ∈ F. Then ym = (e1 +m1 + e2)m = e1m+m1m+ e2m. As E is a perfect
ideal of F, there exists e3 ∈ E such that e1m+m1m+ e2m = m1m+ e3.
That is, ym/E = m1m/E. Then by De�nition 4.9(1), we get y ∈ m1 + E.
This implies E +m1 + E ⊆ m1 + E. As 0 ∈ E, we have m1 + E ⊆ E +m1 + E.
Hence we get E +m1 + E = m1 + E.
Let x E≡ y. Then there exist e1, e2 ∈ E such that x+ e1 = y + e2.
Let m ∈ F. Then (x+ e1)m = (y + e2)m
⇒ xm+ e1m = ym+ e2m.
⇒ xm+ e3 = ym+ e4 [e1m = e3 ∈ E, e2m = e4 ∈ E].
⇒ xm/E = ym/E.
As m is arbitrary, we have xm/E = ym/E, ∀m ∈ F. Then by De�nition 4.9(1),
we get x ∈ y + E. Now, we will prove that Em1 ⊆ E,∀ m1 ∈M.
Let y ∈ Em1. Then y = am1, for some a ∈ E. Now, take m ∈ F.
Then (am1)m = a(m1m) ∈ aF ⊆ E ⇒ (am1)m = e2 + 0m, for some e2 ∈ E.
This gives (am1)m/E = om/E. Then by De�nition 4.9(1), we get am1 ∈ E.
Now, we show that m1(s

′ + E) + E = m1s
′ + E, ∀ m1, s

′ ∈M.
Let a, e1 ∈ E and m ∈ F. Suppose we assume that (m1(s

′ + a))m/E ̸= m1s
′m/E.

Now, take x ∈ F. Then x((m1(s
′ + a))m) = x(m1(s

′m + am)) = xss′m + e2, for
some e2 ∈ E. This implies x((m1(s

′ + a))m)/E = x(m1s
′m)/E.

As this is a contradiction for (m1(s
′+a))m/E ̸= m1s

′m/E, hence we get (m1(s
′+

a))m/E = (m1s
′m)/E, ∀ m ∈ F.

Then by De�nition 4.9(1), we get m1(s
′ + a) ∈ m1s

′ + E.
This implies m1(s

′ + E) + E = m1s
′ + E. Thus E is a perfect ideal of M.

□

Proposition 4.11. If F is a perfect ideal of M and left invariant such that
F/E ∈ η and the class η satis�es the condition U ′

1, then (E : F )M is a perfect
ideal of M.

Proof. By Proposition 4.10, we have E is a perfect ideal of M.
Now, take m1,m2 ∈ (E : F )M . Then m1F ⊆ E and m2F ⊆ E.
This implies m1F +m2F ⊆ E + E = E. That is, (m1 +m2)F ⊆ E.
Hence m1 +m2 ∈ (E : F )M .
Let z ∈ (E : F )M + x+ (E : F )M . Then there exist m1,m2 ∈ (E : F )M such that
z = m1 + x+m2. Now, take m ∈ F.
Then zm = (m1+x+m2)m = m1m+xm+m2m. As E is a perfect ideal of F, there
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exists m3 ∈ E such that m1m+ xm+m2m = xm+m3. That is, zm/E = xm/E.
As m ∈ F is arbitrary, we have zm/E = xm/E, ∀ m ∈ F.
Then by De�nition 4.9(1), we get z ∈ x+ E ⊆ x+ (E : F )M .
Hence (E : F )M + x+ (E : F )M = x+ (E : F )M .
Let z ∈ x(x′ + (E : F )M ) + (E : F )M . Then there exist m1,m2 ∈ (E : F )M such
that z = x(x′ +m1) +m2. Now, take m ∈ F.
Then zm = (x(x′ +m1)+m2)m = x(x′ +m1)m+m2m = x(x′m+m1m)+m2m.
As E is an ideal of M, there exist a1 ∈ E such that x(x′m + m1m) + m2m =
xx′m+ a1. This implies zm/E = xx′m/E.
Then by De�nition 4.9(1), we get z ∈ xx′ + E ⊆ xx′ + (E : F )M .
Hence x(x′ + (E : F )M ) + (E : F )M = xx′ + (E : F )M .
Let x ≡(E:F )M y. Then there exist y1, y2 ∈ (E : F )M such that x+ y1 = y + y2.
Now, take m ∈ F. Then (x+ y1)m = (y + y2)m.
⇒ xm+ y1m = ym+ y2m ⇒ xm/E = ym/E.
Then by De�nition 4.9(1), we get x ∈ E ⊆ (E : F )M .
Now, we will prove that (E : F )MM ⊆ (E : F )M . Let z ∈ (E : F )MM.
Then there exists y ∈ (E : F )M and m ∈M such that z = ym.
Then zF = (ym)F = y(mF ) ⊆ yF ⊆ E. Hence z ∈ (E : F )M .
Thus (E : F )M is a perfect ideal of M. □

Proposition 4.12. If the class ηe satis�es the condition U
′
1 and E is a left invariant

perfect ideal of the seminearring M and E/F ∈ ηe, then (F : E)M is an equiprime
perfect ideal of M.

Proof. By Proposition 4.11, we have (F : E)M is a perfect ideal of M.
Now, take m1,m2 ∈M such that m1,m2 /∈ (F : E)M .
Then m1a /∈ F and m2b /∈ F, for some a, b ∈ E.
As F is an equiprime perfect ideal of E, we have m1aEm2b ⊈ F.
Hence m1Ey ⊈ (F : E)M .
Now, take T is any invariant subsemigroup of M ∋ (F : E)M ⊂ T.
Now, take m1,m2 ∈M such that am1/(F : E)M = am2/(F : E)M ∀ a ∈ T.
Then there exist f1, f2 ∈ (F : E)M such that am1 + f1 = am2 + f2
⇒ (am1 + f1)d = (am2 + f2)d ∀ d ∈ E
⇒ am1d+ f1d = am2d++f2d
⇒ am1d/F = am2d/F.
As F ⊆ (F : E)M ⊂ T, F is an equiprime perfect ideal of E and a(m1d)/F =
a(m2d)/F, we get m1d/F = m2d/F ∀ d ∈ E.
Then by De�nition 4.9(1), we get m1 ∈ m2 + F ⊆ y + (F : E)M .
Hence m1/(F : E)M = m2/(F : E)M .
Then by the De�nition 2.15, we have (F : E)M is an equiprime perfect ideal of
M. □

Lemma 4.13. If the class ηe satis�es the condition U ′
1 and E ◁ ·M such that

ME ⊆ E, E ∈ ηe and 0 ̸= a ∈ S, then aE ̸= 0 and Ea ̸= 0.

By Proposition 4.8, we have ηe is hereditary. Then by Proposition 4.6, we get
Uηe is a KA radical class.

Theorem 4.14. Uηe = P ′
e = {S | S is a seminearring such that P ′

e(S) = S}.
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Theorem 4.15. Uηc = P ′
c = {M | M is a seminearring such that Pc(M) =M}.

Proof. Let M ∈ Uηc. Then M−▷N ̸= 0 such that N /∈ ηc. This means M has no
non-zero completely prime ideals. This implies M = P ′

c(M). Therefore Uηc ⊆ P ′
c.

Now, take M ∈ P ′
c. Then M = P ′

c(M)). This implies M has no nonzero c-prime
perfect ideals of M.
Hence M ∈ Uηc. Thus we get Uηc = Pc. □

Proposition 4.16. If E is an essential ideal of a seminearring M , M is zero-
symmetric and the class ηc satis�es condition U

′
1, E ∈ ηc thenM ∈ ηc (ηc is closed

under essential extensions).

Proof. From Proposition 4.11, we have (0 : E)M = {s ∈ M | sE = 0} is a perfect
ideal of M. Now, ((0 : E)M ∩ E)2 ⊆ (0 : E)ME = (0).
As (0 : E)M ∩ E is an ideal of E and E ∈ ηc, we get (0 : E)M ∩ E = (0).
Because E is an essential ideal of M, then we get (0 : E)M = (0).
Now, take m1,m2 ∈M such that m1,m2 ̸= 0.
As (0 : E)M = (0), there exists x, y ∈ E such that m1x ̸= 0 and m2y ̸= 0.
Suppose that xm1 = 0. Then m1xm1x = m10x = 0. As E ∈ ηc, we get m1x = 0.
Which is a contradiction to the assumption xm1 = 0.
Therefore xm1 ̸= 0. Then we get (xm1)(m2y) ̸= 0.
This gives m1m2 ̸= 0. Thus M ∈ ηc. □

Proposition 4.17. If E is a completely semiprime perfect ideal of M and left
invariant, x, y ∈M, then the following conditions hold.

(1) If xy ∈ E then yx ∈ E.
(2) If xy ∈ E and a ∈M then xay ∈ E.

Proof. 1. Let (yx)2 ∈ E. Then (yx)2 = (yx)(yx) = y(xy)x. As xy ∈ E, there
exists i1 ∈ E such that y(xy)x = y(i1x) = yi2 ∈ E. As E is completely semiprime,
we get yx ∈ E.
2. Now, (xay)2 = (xay)(xay) = xa(yx)ay = xai1ay (From 1.), for some i1 ∈ E.
As E is left invariant, we get (xay)2 ∈ E. Because E is completely semiprime, we
get xay ∈ E. □

Proposition 4.18. If M is an equiprime seminearring then mx = my, ∀ m ∈M
implies x = y.

Proof. Suppose that mx = my, ∀ m ∈ M. This implies xmx = xmy, ∀ m ∈ M.
As M is an equiprime seminearring, we get x = 0 or x = y.
If x ̸= y then xmx = xmy, ∀ m ∈ M implies x = 0 and ymx = ymy, ∀ m ∈ M
implies y = 0, which is a contradiction. Therefore x = y. □
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