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Abstract. For a semigroup S, the principal left(right) ideal graph SΓ (ΓS)

is a graph with vertex set S and two elements are adjacent if and only if their
principal left (right) ideals intersects. In this paper we determined different

types of graph energies such as A-energy, Q-energy, and L-energy of the

principal left (right) ideal graphs of rectangular bands and established the
relation between these energies. The automorphism groups of principal left

(right) ideal graphs of such semigroups are also determined.

1. Introduction

Let S be a semigroup and α ∈ S. The principal left ideal generated by α,
denoted by S1α is defined by S1α = {sα : s ∈ S}

⋃
{α}. The principal right ideal

is defined accordingly. The principal left(right) ideal graph SΓ (ΓS)of a semigroup
S is defined as a graph with vertex set S in which two distinct vertices are adjacent
if and only if their principal left (right) ideals intersects[7]. In [9] and [?] Indu and
John characterised the principal ideal graphs of the rectangular bands and Rees
matrix semigroups respectively. A semigroup S satisfying α2 = α for all α ∈ S
is said to be a band. If αβα = α for all α, β ∈ S then the band S is said to a
rectangular band. For any two nonvoid sets I and T , define an operation on I ×T
by

(i, t)(j, s) = (i, s),

then I ×T is a rectangular band and any rectangular band is isomorphic to I ×T
for some I and T [6]. We refer the reader to [6] for un-cited terms and concepts
regarding semigroups and [2] for graphs. Throughout this paper S = I×T denotes
a rectangular band.

In this work (Section 2) we describe A-eigenvalues [11], L-eigenvalues [1, 10],
and Q-eigenvalues [12] of SΓ, the eigenvalues of adjacency marix A(SΓ), Laplacian
matrix L(SΓ) and signless Laplacian matrix Q(SΓ) respectively. In Section 3
we describe and compare different energies such as A-energy εA(SΓ), the energy
of the adjacencny matrix [5, 11], L-energy εL(SΓ), the energy of the Laplacian
matrix [13], and Q-energy εQ(SΓ), the energy of the signless Laplacian matrix [3].
An automorphism [4] of a graph Γ is a bijection ψ : V (Γ) → V (Γ) such that
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ψ preserves both adjacency and non-adjacency. In Section 4 the automorphism
group of SΓ and ΓS are characterised in the case of rectangular bands.

Since two principal left ideals of S = I × T intersects if and only if they are
equal, we have the following lemmas by Indu and John [9] which are used the
sequel.

Lemma 1.1. [9] Let S = I×T be a rectangular band. Then the principal left ideal
graph SΓ is a disconnected graph with o(T ) components in which each connected
block is a complete graph with o(I) vertices.

Lemma 1.2. [9] Let S = I×T be a rectangular band. Then the principal right ideal
graph ΓS is a disconnected graph with o(I) components in which each connected is
a complete graph with o(T ) vertices.

2. Spectrum of SΓ and ΓS

In this section we sketch out the characteristic polynomials of different matrices
derived from the principal ideal graphs SΓ and ΓS of rectangular band I × T .
This will help to identify different energies of SΓ and ΓS .

First we charactrise the A-energy of the principal ideal graph.

Theorem 2.1. Consider S = I × T with o(I) = m, and o(T ) = n. Then the
A-energy εA(SΓ) of the principal left ideal graph is 2n(m− 1).

Proof. By Lemma 1.1 SΓ is a disconnected graph with o(T ) = n components in
which each component is complete with o(I) = m vertices. So the adjacency
matrix A(SΓ) is given by

A(SΓ) =


Jm − Im Om Om · · · Om

Om Jm − Im Om · · · Om

...
...

...
...

Om Om Om · · · Jm − Im


mn×mn

where Jm, Im and Omdenotes the all-ones matrix, identity matrix, and the zero
matrix of order m respectively. Each Jm − Im block is given by

Jm − Im =


0 1 1 · · · 1
1 0 1 · · · 1
...

...
...

...
1 1 1 · · · 0


m×m

The characteristic polynomial of each nonzero block Jm − Im is

[x− (m− 1)](x+ 1)(m−1)

Since there are o(T ) identical blocks, the characteristic polynomial of A(SΓ) is

[x− (m− 1)]n(x+ 1)n(m−1)

Hence the A-eigenvalues of A(SΓ) are (m− 1) of multiplicity n and (−1) of mul-
tiplicity n(m− 1) and the A-energy εA(SΓ) = 2n(m− 1). □
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In a similar manner using Lemma 1.2 and Theorem 2.1 we can characterise the
A-energy of the principal right ideal graph as follows.

Corollary 2.2. Consider S = I × T with o(I) = m, and o(T ) = n. Then the
A-energy εA(ΓS) of the principal right ideal graph is 2m(n− 1).

Next we give a characterisation for the largest A-eigenvalue of SΓ,

Theorem 2.3. Let ρ(SΓ) be the largest A-eigenvalue of SΓ, where S = I × T .
Then we have the following.

(i) ρ(SΓ) ≥ 0 and ρ(SΓ) = o(I)− 1.
(ii) In SΓ, the multiplicity of ρ(SΓ) is o(T ).

Proof. By Theorem 2.1, ρ(SΓ) = o(I)− 1. Since I is nonempty, o(I) ≥ 1. Hence
ρ(SΓ) ≥ 0 and this proves (i). Proof of (ii) follows from Theorem 2.1. □

Now we state the dual case of Theorem 2.3, the proof is similar so omitted.

Corollary 2.4. Let ρ(ΓS) be the largest A-eigenvalue of ΓS, where S = I × T .
Then,

(i) ρ(ΓS) ≥ 0 and ρ(ΓS) = o(T )− 1.
(ii) In ΓS, the multiplicity of ρ(ΓS) is o(I). □

Now we have the description of L-energy for SΓ.

Theorem 2.5. Consdier S = I × T with o(I) = m and o(T ) = n. Then the
L-energy, εL(SΓ), of the principal left ideal graph is mn(m− 1).

Proof. By Lemma 1.1, the Laplacian matrix L(SΓ) is a square matrix given by

L(SΓ) =


mIm − Jm Om Om . . . Om

Om mIm − Jm Om . . . Ogm

...
...

...
...

Om Om Om . . . mIm − Jm


mn×mn

where each diagonal block is

mIm − Jm =


m− 1 −1 −1 · · · −1
−1 m− 1 −1 · · · −1
...

...
...

...
−1 −1 −1 . . . m− 1


m×m

The characteristic polynomial of each nonzero block mIm − Jm is x(x −m)m−1.
Since there are o(T ) identical blocks, the characteristic equation of L(SΓ) is

xn(x−m)n(m−1) = 0.

Hence L-eigenvalues of L(SΓ) are m and 0 of multiplicity n(m − 1) and n
respectively; and the L-energy εL(SΓ) = mn(m− 1). □

Similarly using Lemma 1.2 and Theorem 2.5, we have the following result.

Corollary 2.6. Consider S = I × T with o(I) = m and o(T ) = n. Then the
L-energy εL(ΓS) of the principal right ideal graph is mn(n− 1).
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In the following result, we give a characterisation for the largest L-eigenvalue
of SΓ

Theorem 2.7. Let µ(SΓ) be the largest L-eigenvalue of SΓ, where S = I × T .
Then the following statements hold:

(i) µ(SΓ) ≥ 1 and µ(SΓ) = o(I).
(ii) In SΓ, the multiplicity of the L-eigenvalue 0 is o(T ).

Proof. By Theorem 2.5, µ(SΓ) = o(I). Since I is nonempty ,we have o(I) ≥ 1 and
hence µ(SΓ) ≥ 1. This proves (i) and the second part follows from Theorem 2.5.

□

Now we state the dual case of Theorem 2.7 without proof.

Corollary 2.8. Let µ(ΓS)) be the largest L-eigenvalue of ΓS, where S = I × T .
Then the following statements hold:

(i) µ(ΓS) ≥ 1, and µ(Γs) = o(T ).
(ii) In ΓS, the multiplicity of the L-eigenvalue 0 is o(I)

Next Theroem describes the the Q-energy of principal left ideal graph.

Theorem 2.9. Consider S = I × T with o(I) = m and o(T ) = n. Then the
Q-energy εQ(SΓ) of the principal left ideal graph is 2n(m− 1).

Proof. By Lemma 1.1, the signless Laplacian matrix Q(SΓ) is a square matrix
given by

Q(sΓ) =


(m− 2)Im + Jm Om . . . Om

Om (m− 2)Im + Jm . . . Om

...
...

...
Om Om . . . (m− 2)Im + Jm


mn×mn

where each diagonal block is

(m− 2)Im + Jm =


m− 1 1 1 . . . 1

1 m− 1 1 . . . 1
...

...
...

...
1 1 1 . . . m− 1


m×m

The characteristic polynomial of each nonzero diagonal block is

xm−1[x− (2m− 2)]

. Since there are o(T ) identical blocks, the characteristic equation of Q(SΓ) is

xn(m−1)[x− (2m− 2)]n = 0

. Hence Q-eigenvalues of Q(SΓ) are 0 of multiplicity n(m − 1) and 2(m − 1) of
multiplicity n and the Q-energy εQ(SΓ) = 2n(m− 1). □

The following Corollary is an immediate consequence of Lemma 1.2 and Theo-
rem 2.9.

Corollary 2.10. Consider S = I × T with o(I) = m and o(T ) = n. Then the
Q-energy εQ(ΓS) of the principal right ideal graph is 2m(n− 1).
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The next result follows from Theorem 2.9.

Theorem 2.11. Let q(SΓ) be the largest Q-eigenvalue of SΓ, where S = I × T .
Then we have the following:

(i) q(SΓ) ≥ 0 and q(SΓ) = 2(o(I)− 1).
(ii) In SΓ, the multiplicity of q(SΓ) is o(T ).

Dually we have the following Corollary.

Corollary 2.12. Let q(ΓS) be the largest Q-eigenvalue of ΓS, where S = I × T .
Then we have:

(i) q(ΓS) ≥ 0 and q(ΓS) = 2[o(T )− 1].
(ii) In ΓS, the multiplicity of q(ΓS) is equal to o(I). □

3. Relationship between εA(SΓ), εL(SΓ), and εQ(SΓ)

In this section we establish the relation between A-energy, Q-energy, and L-
energy of the principal left (right) ideal graphs of rectangular bands.

As a consequence of Theorem 2.1, and Theorem 2.9, we have the following
result.

Theorem 3.1.

εA(SΓ) = εQ(SΓ)

By Corollary 2.2 and Corollary 2.10, we have following charactrisation.

Corollary 3.2.

εA(ΓS) = εQ(ΓS)

Theorem 3.3.

εL(SΓ) =
o(I)
2

εQ(SΓ)

Proof. From Theorem 2.5,
εL(SΓ) = mn(m− 1) and from Theorem 2.9, εQ(SΓ) = 2n(m− 1).

Hence εL(SΓ) =
m
2 εQ(SΓ) =

o(I)
2 εQ(SΓ). □

Corollary 3.4.

εL(ΓS) =
o(T )

2
εQ(ΓS).

Proof. The result is obvious by Corollary 2.6 and Corollary 2.10. □

Theorem 3.5. If o(I) = 2, then εL(SΓ) = εQ(SΓ).

Proof. It is evident from Theorem 3.3. □

The following Corollary is an immediate consequence of 3.4.

Corollary 3.6. If o(T ) = 2, then εL(ΓS) = εQ(ΓS)

94



SIJO GEORGE, R. S. INDU, C. S. PREENU, AND K. R. SANTHOSH KUMAR

3.1. Different energies of left(right) zero semigroups. A semigroup S is
said to be a left (right) zero semigorup if αβ = α (αβ = β) for all α, β ∈ S. These
semigroups are special cases of rectangular bands, I × T , such that o(T ) = 1
(o(I) = 1). So by substituting either o(I) = 1 or o(T ) = 1 in the results of the
previous sections, we can deduce the corresponding results for left or right regular
semigroups.

Theorem 3.7. If S is a right zero semigroup, then the A-energy, L-energy, and
Q-energy of SΓ are zeros.

Proof. When S is a right zero semigroup, we can write S = I × T with o(I) = 1.
Now the result is clear from Theorem 2.1, Theorem 2.5, and Theorem 2.9 by
substituting o(I) = 1. □

As above we have similar result for ΓS of left zero semigroups. We state it as a
corollary without proof.

Corollary 3.8. If S is left zero semigroup, then then A-energy, L-energy and
Q-energy of ΓS vanishes. □

When S is a left zero semigroup, the pricipal right ideal graph ΓS is a graph
having o(S) vertices and no edges. Also the principal left ideal graph SΓ is a
complete graph with o(S) vertices. Similarly when S is a right zero semigroup, ΓS

is a complete graph and SΓ is a null graph having o(S) vertices.

4. Automorphism group of SΓ

In this section we analyse the automorphism group, in the case of principal
left(right) ideal graphs. Since SΓ is a disjoint union of complete graphs and each
complete graphs having the same number of vertices, we get the follwoing result.

Theorem 4.1. Let S = I×T be a rectangular band, then the automorphism group
of SΓ is isomorphic to Sn ×

∏n
k=1 Sm, where Sm denotes the symmetric group on

m letters and o(I) = m, o(T ) = n.

Proof. Since SΓ is a disjoint union of Km, complete graph with m vertices, we
have the automorphism group of each component is isomorphic to Sm, Since there
are o(T ) such components and we can also permute these components, we get the
automorphism group isomorphic to

Sn ×
n∏

k=1

Sm.

□

Finally we state the dual case of Theorem 4.1.

Theorem 4.2. Let S = I × T be a rectangular band , then the automorphism
group of ΓS is isomorphic to Sm ×

∏m
k=1 Sn. □
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Conclusion

The A-energy and Q-energy of principal left (right) ideal graphs of rectangular

bands are same. Furthermore, the L-energy of SΓ is o(I)
2 times that of A-energy

of SΓ and the L-energy of ΓS is o(T )
2 times that of A-energy of ΓS .
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