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Abstract. In this paper, we introduce an interesting model-independent

lower bound for the price of the Swiss Re Mortality Bond 2003 which was the
first catastrophic mortality bond to be launched in the insurance market. This

bond captures the behaviour of a well-defined mortality index to generate pay-

offs for bondholders. Pricing of catastrophic mortality bonds is an interesting
problem and no closed form solution can be found in the existing literature. In

our approach, we express the pay-off of such a bond in terms of the pay-off of

an Asian put option in a manner similar to [2] and present an efficient model-
independent lower bound by making some very general assumptions. We

carry out Monte Carlo simulations to estimate the bond price and illustrate

the quality of the bound for a variety of models.

1. Introduction

Events that have the ability to bring the world to a standstill are referred to
as catastrophes. Catastrophes inflate the claims of insurers and re-insurers to
an unforeseen magnitude, thereby testing their capacity to settle the dues and
at the same time eroding their reserves, even leading to instances of bankruptcy.
Mankind has recently been a witness to the devastating COVID-19 pandemic.
This catastrophic pandemic has highlighted the fact that even with all modern
medical and technical advancements, human health and life is at stake as a small
corona virus has wiped out almost 7 million human lives to date.

Long back in the mid-1990’s post events such as Hurricane Andrew and North
ridge Earthquake, ‘Insurance Linked Securities’ (ILS) called ‘Catastrophic (Cat)
Bonds’ were floated in the market. This market has been growing ever since so
much so that the year 2021 witnessed a record issuance of USD 12.8 billion in
cat bonds to the world market (c.f. [68]). In fact in the year 2003, Swiss Re
designed the first catastrophic mortality (CATM) bond also abbreviated as CMB.
Since then as many as 16 CATM bonds have been issued. Most of these bonds are
based on the value of a mortality index which if lies within a particular range, the
principal and the coupons of the bond are paid in full; otherwise depending on its
stretch beyond a stipulated range, erosion of the initial capital is triggered which
is determined using a well-laid out formulation. Most of these bonds have been
successful and have ended up being very lucrative investments for the investors
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since they are relatively free from impending market risks. We throw more light
on the key features of these bonds in the next section.

Valuation of these bonds has been an intriguing puzzle for researchers and aca-
demic literature contains a flurry of research articles on this topic. Notable among
the recent publications are the ones by [2] who utilize the theory of comonotonic-
ity to construct model-independent bounds, [16] who introduce a mortality model
that depicts the relevant pandemic effects on pricing mortality-linked securities
(MLSs), using a threshold jump approach and [50] who consider correlation be-
tween mortality and interest rate to price excess mortality risk in a post pandemic
era. We take a deeper dig at valuation of the CATM bonds in Section 3. Section
4 then presents the design of the Swiss Re Bond. Further the Section 5 unfolds
the pay-off of the Swiss Re mortality bond in terms of the pay-off of an Asian put
option. Section 6 showcases the put-call parity for this bond. In section 7, we
propose a model independent lower bound. Section 8 presents numerical findings.
The final section concludes the paper.

2. Key Features of CATM Bonds

The basic transaction structure of catastrophic mortality bonds has remained
reasonably generic over most of the sixteen public transactions that have occurred
to the end of 2023. The following figure shows the detailed structure.
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FIGURE A1

Basic Catastrophic Mortality Bond Transaction Structure
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Figure 1. Basic Catastrophic Mortality Bond Structure (Source:
[54])

The transaction involves three parties

• The Ceding company or Sponsor
• Special Purpose Vehicle (SPV) or issuer
• Investors (generally large institutional buyers1)

The transaction begins with the formation of a SPV which issues bonds to investors
and invests the received capital in high quality securities such as government bonds

1Commonly pension funds with a view to hedge their position in terms of longevity and

mortality
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or AAA corporate bonds which are held in a trust account. The coupon paid to
the buyer comprises of investment returns from this account plus the risk premium
paid by the ceding company.

Embedded in these bonds is a call option that is triggered by a defined cata-
strophic event. Like the transaction structure, the contingent claim pay-off mecha-
nism has remained more or less the same for all transactions. The key components
of the contingent claim payoff mechanism are

• principal amount
• coupon
• mortality index
• attachment/trigger point
• exhaustion point.

The principal amount represents the maximum payoff that the sponsor can receive
if the bond is triggered and this has typically ranged from U.S. $50 to U.S. $100
million per tranche. There are well defined attachment and exhaustion points and
generally a very attractive periodic coupon to attract investors. The mortality
index, attachment point, and exhaustion point determine whether the bond is
triggered and if so, what percentage of the principal is paid. The mortality index
is generally defined over a 2-calendar-year period in order to mitigate the chance
that an influenza pandemic will be cut off by the end of the measurement period.
This index is computed using general population mortality rates published by
official public reporting sources weighted by age, gender and sometimes country
([61]). The weights are specified by the sponsor to broadly reflect their exposure (in
terms of data availability and chance of a catastrophic occurrence) to an insured
population and are fixed throughout the duration of the period over which the
catastrophic bond provides coverage called the risk period. ([67]). As an example,
the figure 2 represents the weight distribution of the very first CMB ‘Vita I’ issued
by the Swiss Re in 2003.

The attachment and exhaustion points are expressed as a percentage of the
mortality index at issuance. To date, the lowest attachment point has been 105
percent while the highest exhaustion point has been 150 percent. The reduction
mechanism for the principal amount is triggered if the mortality index value ex-
ceeds the attachment point otherwise the full principal amount is returned to the
investor at maturity. Once the attachment point is exceeded, the reduction in
the principal amount increases linearly between the attachment and exhaustion
points until the index exceeds the exhaustion point and the full principal is lost
by the investor ([14]). For the VITA I bond discussed above the attachment and
exhaustion points were 130 percent and 150 percent and the capital repayment or
erosion phenomenon is shown in figure 3. Clearly these bonds are principal-at-risk
instruments. The higher the trigger point is, the lower the chance that the event
would actually happen and this would mean the lower the returns for the investor
and vice-a-versa based on the principle of ‘high risk-high reward’.

The choice of an index-based pay-off trigger is driven by investors’ appetite for
transparent, easy-to-understand, and hard-to-manipulate triggers ([77]) such as

69



RAJ KUMARI BAHL

 

 

US

70%

UK

15%

France

7%

Swizerland

5%

Italy

3%

Geographic distribution within the vita index

20-24

1%

25-29

5%

30-34

12%

35-39

20%

40-44

20%

45-49

16%

50-54

12%

55-59

7%

60-64

3%

65-69

2%

70-74

1%

75-79

1%Age-Weights

Figure 2. Weight Distribution of the VITA I Index

the ones based on indemnity2. Index-based pay-off triggers can be standardized
more easily than their indemnity-based counterparts3 and they reduce moral haz-
ard because the sponsor still has an incentive to limit losses as the pay-offs are
based on an independent metric rather than the sponsor’s actual losses. Moreover,
there is a reduction in adverse selection as pay-offs are based on publicly avail-
able data and there are few informational asymmetries to be exploited ([39];[13]).
In the ensuing section we investigate the approaches that have been employed in
academic literature in regards to valuation of CATM bonds.

3. Valuation

Given how mortality-linked bonds are structured, their pricing requires exper-
tise in actuarial science (for assessing the impact of changes in mortality), econo-
metrics (for modelLing the random evolution of mortality rates) and finance (for
turning simulation results to prices). A lot of valuation approaches to price CMBs

2Indemnity: triggered by the issuer’s actual losses, so the sponsor is indemnified, as if they
had purchased traditional catastrophe reinsurance. If the layer specified in the cat bond is $100

million excess of $500 million, and the total claims add up to more than $500 million, then the
bond is triggered [78].

3Queensgate and ALPS II are examples of life indemnity bonds issued by Swiss Re.
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Figure 3. Capital Repayment/ Erosion for the Swiss Re 2003
CATM Bond (Source: [46] and [10])

have germinated and we discuss these in Chapter 3. To model extreme mortality
risk and value CMBs, researchers have devised a number of stochastic models that
incorporate jump effects. These models include some superb contributions by [4],
[8], [17], [20], [18], [19, 22], [27, 26], [29], [38], [52], [53] and [81]. Various features
of mortality jumps in terms of its occurrence and severity have been investigated
in great depth. For example, [18] and [19] use independent Bernoulli distributions,
[26] employed Poisson jump counts while [52] considered a discrete-time Markov
chain.

Moreover, the first generation of econometric models for valuing catastrophic
mortality bonds are univariate, modelling one population at a time. Models be-
longing to this category encompass those that were proposed by [18], [26], [29] and
[55]. Although these models capture characteristics such as skewness and leptokur-
tosis, they are unable to accommodate the potential static- and cross-correlations
among the mortality dynamics of different populations. Therefore, these mod-
els may not be efficient enough to price most of catastrophic mortality bonds,
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including Swiss Re’s Vita I, which are linked to the mortality experiences of mul-
tiple populations. The second generation of models are multivariate, modelling all
populations in question simultaneously. Models that fall into this category have
been proposed by [81] who applied a combination of univariate time-series models
with correlated innovations, [53] who employed a model with a common jump effect
and correlated idiosyncratic risks, [21] who considered a combination of uni-variate
GARCH models and a factor copula, [74] who linked uni-variate ARMA models
with a dynamic copula and [75] who propose a DCC-GARCH model, in which
the correlations are captured within the model structure (rather than externally
through a copula) and are permitted to vary over time.

As the MLS market is incomplete, it is not possible to find a unique pricing
measure. However the fact that the market is arbitrage-free, allows us to lay
hands on at least one risk-neutral measure, whicht can then be utilized to obtain
fair prices of mortality contingent securities such that no matter what the choice
of such a measure is, the pricing is done in a model independent way. We exploit
this fact and work in a model-independent atmosphere: that is, we refrain from
assuming that the mortality evolution process behaves according to a given model,
but aim to draw conclusions that hold under any model. This is in contrast to the
standard approach to pricing mortality contingent products which is to postulate
a model and to determine the price of the underlying as the suitably discounted
risk neutral expectation of the pay-off under that model. A major drawback of
this approach is that no model has the ability to capture the real world behaviour
of MLSs fully, thus exposing the entire procedure to model risk.

4. Design of the Swiss Re Bond

As hinted in the introduction, the financial capacity of the life insurance in-
dustry to pay catastrophic death losses from natural or man-made disasters is
limited. To expand its capacity to pay catastrophic mortality losses, Swiss Re
obtained about 400 million in coverage from institutional investors in lieu of its
first pure mortality security. The reinsurance giant issued a three year bond in
December 2003 with maturity on January 1, 2007. To carry out the transaction,
Swiss Re set up a special purpose vehicle (SPV) called Vita Capital Ltd. This
enabled the corresponding cash flows to be kept off Swiss Re’s balance sheet. The
principal is subject to mortality risk which is defined in terms of an index qti in
year ti. This mortality index was constructed as a weighted average of mortality
rates (deaths per 100,000) over age, sex (male 65% and female 35%) and national-
ity (US 70%, UK 15%, France 7.5%, Italy 5% and Switzerland 2.5%) and is given
below.

qti =
∑
j

Cj

∑
k

Ak

(
Gmqmk,j,ti +Gfqfk,j,ti

)
(4.1)

where qmk,j,ti and qfk,j,ti are the respective mortality rates (deaths per 100,000) for
males and females in the age group k for country j, Cj is the weight attached to
country j, Ak is the weight attributed to age group k (same for males and females)
and Gm and Gf are the gender weights applied to males and females respectively.
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The Swiss Re bond was a principal-at-risk bond. If the index qti (ti = 2004,
2005 or 2006 for i = 1, 2, 3 respectively) exceeds K1 of the actual 2002 level, q0,
then the investors will have a reduced principal payment. The following equation
describes the principal loss percentage, in year ti:

Li =


0 if qti ≤ K1q0
(qti−K1q0)
(K2−K1)q0

if K1q0 < qti ≤ K2q0

1 if qti > K2q0

(4.2)

In particular, for the case of Swiss Re Bond, K1 = 1.3 and K2 = 1.5. In lieu of
having their principal at risk, investors received quarterly coupons equal to the
three-month U.S. LIBOR plus 135 basis points. There were 12 coupons in all with
a coupon value of

COj =


(

SP+LIj
4

)
.C if j = 1

4 ,
2
4 , ...,

11
4 ,(

SP+LIj
4 .C +XT

)
if j = 3,

(4.3)

where SP is the spread value which is 1.35%, LIj are the LIBOR rates, C = $400
million, T = t3 and XT is a random variable representing the proportion of the
principal returned to the bondholders on the maturity date such that

XT = C

(
1−

3∑
i=1

Li

)+

, (4.4)

where
∑3

i=1 Li is the aggregate loss ratio at t3. However, there was no catastrophe
during the term of the bond. The discounted cash flow (DC) of payments is given
by

DC (r) =

12∑
i=1

CO i
4(

1 + r
4

)i (4.5)

where r is the nominal annual interest rate.
Further define

YT = −
∫ T

0

ρ (t) dt

where ρ(t) is the US LIBOR at time t. As a result, the risk-neutral value at time
0 of the random principal returned at the termination of the bond is

P = EQ

[
e−YTXT

]
where Q is the risk-neutral measure. However, under the assumption of indepen-
dence of YT and XT , this reduces to

P = EQ

[
e−YT

]
EQ[XT ]

The conditions under which it is possible (or not) to transfer the independence
assumption from the physical world measure P to Q have been discussed exten-
sively in [33]. Henceforth, in this incomplete market, we choose to price under a
risk neutral measure that preserves independence between market and mortality
risks. In order to proceed, we represent EQ

[
e−YT

]
as e−rT , which implies

P = e−rTEQ[XT ] (4.6)
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where r is the risk-free rate of interest. In subsequent writing, we drop Q from
the above expression.

5. The Principal Payoff of Swiss Re Bond as that of an Asian-type
Put Option

In the same spirit as [2], we can write XT given in (4.4) in a more compact
form similar to the pay-off of the Asian put option as shown below:

XT = D

(
q0 −

3∑
i=1

5 (qti − 1.3q0)
+

)+

(5.1)

with

D =
C

q0
(5.2)

and the strike price equal to q0. For the sake of simplicity, we use qi in place of
qti and define

Si = 5 (qi − 1.3q0)
+

(5.3)

and

S =

3∑
i=1

Si (5.4)

Using (5.3)-(5.4) in (5.1) and plugging the result into (4.6), we have:

P = De−rTE
[
(q0 − S)

+
]

(5.5)

It is naturally assumed that the inequalities S ≥ q0 almost surely (a.s.) and S ≤ q0
a.s. do not hold, otherwise the problem has a trivial solution. This means that
q0 ∈

(
F−1+
S (0) , F−1

S (1)
)
, where as in [31], F−1

X is the generalized inverse of the
cumulative distribution function (cdf), i.e.,

F−1
X (p) = inf{x ∈ R|FX (x) ≥ p}, p ∈ [0, 1] (5.6)

and F−1+
X is a more sophisticated inverse defined as

F−1+
X (p) = sup{x ∈ R|FX (x) ≤ p}, p ∈ [0, 1] . (5.7)

Our interest lies in the calculation of reasonable bounds for P . In order to obtain
a lower bound for P , we consider the call counterpart of the pay-off of Swiss Re
Bond rather than (5.5). We nomenclate this pay-off as P1, i.e., we have

P1 = De−rTE
[
(S − q0)

+
]

(5.8)

We then exploit the put-call parity for Asian options to achieve the bounds for
the pay-off in question.
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6. Put-Call Parity for the Swiss Re Bond

We now derive the put-call parity relationship for the Swiss Re Bond. For any
real number a, we have:

(a)
+ − (−a)

+
= a (6.1)

So we obtain

e−rT

(
3∑

i=1

Si − q0

)+

− e−rT

(
q0 −

3∑
i=1

Si

)+

= e−rT

(
3∑

i=1

Si − q0

)
.

On taking expectations on both sides, we obtain

e−rTE

( 3∑
i=1

Si − q0

)+
− e−rTE

(q0 − 3∑
i=1

Si

)+
 = e−rTE

[
3∑

i=1

Si − q0

]
.

Finally, on multiplying by D and expanding the definition of Si, we have

P1 − P = De−rTE

[
3∑

i=1

5 (qi − 1.3q0)
+ − q0

]

⇒ P1 − P = De−rT

[
5

3∑
i=1

ertiC (1.3q0, ti)− q0

]
, (6.2)

where C (K, ti) depicts the price of a European call on the mortality index with
strike K, maturity ti and current mortality value q0. As in [2], we note that
this option would be in-the-money if the mortality index is greater than 1.3q0
which is the trigger level of Swiss Re bond. Clearly, such instruments are not
available for trading in the market at present. But a more comprehensive life
market is developing and we feel such securities will soon be introduced (c.f. [2],
[12] and [11]). The pay-off structures, i.e. the design of the issued securities and
the mortality contingent payments should be developed to appear attractive to
investors and the re-insurer. Although, the Swiss Re bond was fully subscribed
and press reports show that investors were quite satisfied with it (e.g. Euroweek, 19
December 2003), the market for mortality linked securities still needs innovations
such as vanilla options on mortality index to provide flexible hedging solutions.
Investors of the Swiss Re bond included a large number of pension funds as they
could view this bond as a powerful hedging instrument. The underlying mortality
risk associated with the bond is correlated with the mortality risk of the active
members of a pension plan. If a catastrophe occurs, the reduction in the principal
would be offset by reduction in pension liability of these pension funds. Moreover,
the bond offers a considerably higher return than similarly rated floating rate
securities (c.f. [10]). In a manner similar to [3], we feel the success of the life
market hinges upon flexibility. As a result, such option-type structures enable
re-insurer to keep most of the capital while at the same time being hedged against
catastrophic mortality situation. [27] present an interesting note on the trigger
level of 1.3q0 in context of 2004 tsunami in Asia and Africa. A mortality option
of the above type would become extremely useful in such a case. [70] and [23]
decompose the terminal pay-off of the Swiss Re bond into two call options.
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Equation (6.2) gives the required put-call parity relation between the Swiss Re
mortality bound and its call counterpart. Define

G = De−rT

[
5

3∑
i=1

ertiC (1.3q0, ti)− q0

]
. (6.3)

Clearly, if we bound P1 by bounds l1 and u1, then the corresponding bounds for
the Swiss Re mortality bond are as follows

(l1 −G)
+ ≤ P ≤ (u1 −G)

+
. (6.4)

7. An Interesting Lower Bound SWLB
(1)
t

We now proceed to work out an interesting lower bound for the terminal value
of the principal paid in the Swiss Re Bond. For this, we first calculate bounds for
the following Asian-type call option

P1 = De−rTE

( n∑
i=1

Si − q0

)+
 (7.1)

with T = tn and n = 3. The interval [0, T ] consists of the monitoring times
t1, t2, ..., tn−1. The undercurrent of the theory presented in this section is the
paper by [1]. The following inequality holds for every random variable Y and
every constant c

E
[
a+
]
≥ E

[
a1I{Y≥c}

]
. (7.2)

Motivated by [1], we choose a =

(
n∑

i=1

Si − q0

)
and Y = qt, where they make an

appropriate choice for t later on. This leads to

P1 ≥ De−rTE

[(
n∑

i=1

Si − q0

)
1I{qt≥c}

]
. (7.3)

This reduces to:

P1 ≥ De−rTE

[
n∑

i=1

Si1I{qt≥c} − q01I{qt≥c}

]
. (7.4)

Now, again utilizing (7.2) we choose: a = 5 (qi − 1.3q0) and Y = qt so that (7.4)
along with the definition of Si in (5.3) yields:

P1 ≥ De−rTE

[
n∑

i=1

5 (qi − 1.3q0) 1I{qt≥c} − q01I{qt≥c}

]
. (7.5)

We then split the first sum into two parts at j = min {i : ti ≥ t} and condition
the second part on the information available up to time t depicted by Ft so as to
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yield

P1 ≥ De−rT

(
5

j−1∑
i=1

E
[
qi1I{qt≥c}

]
+ 5

n∑
i=j

E
[
1I{qt≥c}e

r(ti−t)qt

]

− 6.5q0

n∑
i=1

P [qt ≥ c]− q0P [qt ≥ c]

)
, (7.6)

where in the last equation, in the second term, we utilize the fact that discounted
asset prices are martingales. We further modify the second term as follows.

E
[
1I{qt≥c}e

r(ti−t)qt

]
= E

[
1I[qt≥c]e

rtie−rt (qt − c+ c)
]

= ertie−rtE
[
1I{qt≥c} (qt − c)

]
+ cer(ti−t)P [qt ≥ c]

= ertie−rtE
[
(qt − c)

+
]
+ cer(ti−t)P [qt ≥ c]

= ertiC (c, t) + cer(ti−t)P [qt ≥ c] . (7.7)

where C (c, t) denotes the price of a European call on the mortality index with
strike c, maturity t and current mortality value q0. Putting equation (7.7) in
equation (7.6), we obtain

P1 ≥ De−rT

(
5

j−1∑
i=1

E
[
qi1I{qt≥c}

]
+ 5

n∑
i=j

ertiC (c, t)

−P [qt ≥ c]

(
q0 (1 + 6.5n)− 5c

n∑
i=j

er(ti−t)

))
. (7.8)

Further, we assume that qi and 1I{qt≥c} are non-negatively correlated for t > ti

⇒ Cov
(
qi, 1I{qt≥c}

)
≥ 0 ⇒ E

[
qi1I{qt≥c}

]
≥ E [qi]E

[
1I{qt≥c}

]
.

Under the assumption of the existence of an Equivalent Martingale Measure (EMM),
Q, the discounted mortality process is a martingale, so that

E [qt] = q0e
rt. (7.9)

Using equation (7.9) we can bound the first term in equation (7.8) from below as
follows.

E
[
qi1I{qt≥c}

]
≥ q0e

rtiP [qt ≥ c]

and this finally yields:

P1 ≥ De−rT

5

n∑
i=j

ertiC (c, t)−P [qt ≥ c]

q0 (1 + 6.5n)− 5q0

j−1∑
i=1

erti − 5c

n∑
i=j

er(ti−t)

 .

(7.10)
Clearly, we have

C (c, t) = e−rtE
[
(qt − c)

+
]
= e−rtE

[
1I{qt≥c} (qt − c)

]
,

which finally leads to:

C (c, t) = e−rtE
[
1I{qt≥c}qt

]
− ce−rtP [qt ≥ c] .
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Let g (.) denote the probability density function (p.d.f.) of the mortality index qt.
Then, we can write the above equation as

C (c, t) = e−rt

[∫ ∞

c

x g (x) dx− c

∫ ∞

c

g (x) dx

]
. (7.11)

Differentiating C (c, t) w.r.t c, using Leibnitz rule for differentiation under the
integral sign, since the limit involves c, we obtain

∂

∂c
C (c, t) = e−rt [−c g (c)−P [qt ≥ c] + c g (c)]

⇒ P [qt ≥ c] = −ert
∂

∂K
C (K, t)

∣∣∣
K=c

=: −ertCK (c, t)

Substituting P [qt ≥ c] in equation (7.10) and rearranging the terms, we achieve

P1 ≥ 5De−rT
n∑

i=j

erti

(
C (c, t)+CK (c, t)

(
(0.2 + 1.3n) q0 −

∑j−1
i=1 e

rtiq0∑n
i=je

r(ti−t)
− c

))
.

(7.12)
Now define:

∼
ct =

(0.2 + 1.3n) q0 −
∑j−1

i=1 e
rtiq0∑n

i=je
r(ti−t)

. (7.13)

Clearly, the right-hand side would be maximal if c =
∼
ct is given by (7.13). Hence,

the optimal lower bound for the Asian-type call option is given by:

P1 ≥ 5De−rT max
0≤t≤T

C
(
∼
ct, t

) n∑
i=j

erti =: lb
(1)
t (7.14)

where c =
∼
ct is given by (7.13) and j = min {i : ti ≥ t}.

The existence of lb
(1)
t hinges upon the assumption of non-negative correlation

between qti and 1I{qt≥c} for t > ti. Finally, in the light of put-call parity derived
in section 6, the trivial lower bound for the Swiss Re mortality bond is given as

P ≥
(
lb

(1)
t −G

)+
=: SWLB

(1)
t . (7.15)

where G is defined in (6.3).

8. Performance of SWLB
(1)
t

We present below in tables that follow the values of the lower bound vis-a-vis
the well-known Monte Carlo (MC) Estimates for the price of the Swiss Re bond
for a variety of models.

In tables 1 and 2, we assume that the mortality evolution process {qt}t≥0 obeys
the Black-Scholes model, specified by the following stochastic differential equation
(SDE)

dqt = rqtdt+ σqtdWt.

In order to simulate a path, we will consider the value of the mortality index in
the three years that form the term of the bond, i.e., n = 3. In fact we consider
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the time points as t1 = 1, ..., tn = T = 3. We invoke the following equation to
generate the mortality evolution:

qtj = qtj−1 exp

[(
r − 1

2
σ2

)
δt+ σ

√
δtZj

]
Zj ∼ N (0, 1) , j = 1, 2, . . . , n.

(8.1)
We highlight below the parameter choices in accordance with [52]. The value of the
interest rate is varied in table 1 while table 2 experiments with the variation in the
base value of the mortality index while assuming a zero interest rate. Parameter
choices for tables 1 and 2 with t specified in terms of years are:

q0 = 0.008453, T = 3, t0 = 0, n = 3, σ = 0.0388.

Table 2 is followed by figures 1-3. While figures 1 and 2 depict comparisons
between the bounds, figure 3 portrays the price bounds for the Swiss Re bond
generated by the Black-Scholes model. We will let MC denote the Monte Carlo
estimate for the Swiss Re bond.

Table 1 reflects that the relative difference (= |bound−MC|
MC ) between the lower

bound and the benchmark Monte Carlo estimate increases with an increase in the
interest rate for a fixed value of the base mortality index q0. This observation is
echoed by figure 1. On the other hand, figure 2 depicts the difference between the
Monte Carlo estimate of the Swiss Re bond and the derived bound. The absolute
difference between the estimated price and the bounds increase as the value of the
base mortality index is increased and then there is a switch and this gap begins
to diminish. This observation is supported by the fact that an increase in the
starting value of mortality increases the possibility of a catastrophe which leads to
the washing out of the principal or in other words the option goes out of money.

In our next example, we assume that the mortality rate ‘q’ obeys the four-
parameter transformed Normal (Su) Distribution (for details see [43] and [44])
which is defined as follows

sinh−1

(
q − α

β

)
= x ∼ N

(
µ, σ2

)
, (8.2)

where α, β, µ and σ are parameters (β, σ > 0) and sinh−1 is the inverse hyperbolic
sine function.

r SWLB
(1)
t MC S.E. of M.C.

0.035 0.899130889163 0.899131338643 0.000007814868
0.030 0.913324024548 0.913324365180 0.000005483857
0.025 0.927447505803 0.927447582074 0.000003766095
0.020 0.941626342687 0.941626356704 0.000002549695
0.015 0.955935721003 0.955935715489 0.000001673442
0.010 0.970419124546 0.970419112046 0.000001032941
0.005 0.985101139986 0.985101142704 0.000000646744
0.000 0.999995778016 0.999995770298 0.000000405336

Table 1. SWLB
(1)
t for the Swiss Re Mortality

Bond under the Black-Scholes Model with q0 =
0.008453 and σ = 0.0388 in accordance with [52].
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q0 SWLB
(1)
t MC S.E. of MC

0.008 0.999999915252 0.999999915033 0.000000052478
0.009 0.999821987950 0.999822630214 0.000003051524
0.010 0.978310383929 0.978782997810 0.000042738093
0.011 0.610962123857 0.652245039892 0.000090193709
0.012 0.040209770810 0.094677358603 0.000089559585
0.013 0.000000000000 0.001665407936 0.000011391823
0.014 0.000000000000 0.000002890238 0.000000379522

Table 2. SWLB
(1)
t for the Swiss Re Mortality

Bond under the Black-Scholes Model with r = 0.0
and σ = 0.0388 in accordance with [52].
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Figure 4. Relative Difference of SWLB
(BS)
t , SWUB

(BS)
t and

SWUB1 w.r.t. MC estimate under Black-Scholes model

For table 3, we vary the interest rate as in table 1 and use the parameter set
employed by [70]. The aforesaid authors use the mortality catastrophe model of
[52] to generate the data and then utilize the quantile-based estimation of [66] to
estimate the parameters of the Su-fit. The initial mortality rate and time points
are same as for tables 1 and 2. The following arrays present the values of the
parameters for the three years 2004, 2005 and 2006 that were covered by the Swiss
Re bond.

α = [0.008399, 0.008169, 0.007905], β = [0.000298, 0.000613, 0.000904],

µ = [0.70780, 0.58728, 0.58743] and σ = [0.67281, 0.50654, 0.42218].

Finally in tables 4 and 5, we experiment with log gamma distribution by varying
the interest rate in table 4 and the base mortality rate in the the latter. The
parameters are chosen as in [23] who employ an approach similar to [70] outlined
above with q0 = .0088 but use maximum likelihood estimation to obtain the
parameters of the fitted log gamma distribution. As before, the following arrays
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Figure 5. Comparison of different bounds under B-S model in
terms of difference from MC estimate for r=0
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Figure 6. Price Bounds under Black-Scholes model for the pa-
rameter choice of Lin and Cox(2008) Model

present the year wise parameters

p = [61.6326, 64.2902, 71.8574], a = [0.0103, 0.0098, 0.0080],

µ = [−5.2452,−5.4600,−5.7238] and σ = [7.4× 10−5, 9.5× 10−5, 9.4× 10−5].

Tables 4 and 5 clearly shows that even for non-normal universe, the bounds are
extremely precise.
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r SWLB
(1)
t MC S.E.(MC)

0.035 0.88432143 0.88468962 0.00006349

0.030 0.90401002 0.90422765 0.00004987
0.025 0.92193552 0.92201394 0.00003804

0.020 0.93857698 0.93863396 0.00002794

0.015 0.95436972 0.95441569 0.00001956
0.010 0.96967776 0.96968765 0.00001352

0.005 0.98477952 0.98478917 0.00000859
0.000 0.99986838 0.99987622 0.00000513

Table 3. Lower Bounds and Upper Bound
SWUB1 for the Swiss Re Mortality Bond un-
der the Su distribution: q0 = 0.008453 and
parameter choice in accordance with [70].

r SWLB
(1)
t MC S.E.(MC)

0.035 0.84849072 0.85408651 0.00049859
0.030 0.87384530 0.87815608 0.00044050
0.025 0.89725569 0.90050920 0.00038741

0.020 0.91898160 0.92103020 0.00034012
0.015 0.93928679 0.94092949 0.00028650
0.010 0.95842907 0.95947457 0.00024259

0.005 0.97664912 0.97748291 0.00020357
0.000 0.99417007 0.99466024 0.00016677

Table 4. Lower Bounds and Upper Bound
SWUB1 for the Swiss Re Mortality Bond
under the transformed gamma distribution
with q0 = 0.0088 and parameter choice in
accordance with [23].

q0 SWLB
(1)
t MC S.E.(MC)

0.008 0.99976607 0.99978465 0.00003227
0.009 0.98914615 0.99003596 0.00023335

0.010 0.88804918 0.89137680 0.00077924
0.011 0.59608967 0.56844674 0.00128761

0.012 0.27104597 0.20822580 0.00105003
0.013 0.08274071 0.04612178 0.00052388

0.014 0.01270202 0.00673234 0.00019165

Table 5. Lower Bounds and Upper Bound
SWUB1 for the Swiss Re Mortality Bond
under the transformed gamma distribution:
r = 0.0 and parameter choice in accordance
with [23].

9. Conclusions

Mortality forecasts are extremely important in the management of life insurers
and private pension plans. Securitization and construction of mortality bonds has
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become an important part of capital market solutions. In the era prior to the
launch of the Swiss Re bond in 2003, life insurance securitization was not designed
to handle mortality risk.

This article proposes a model independent lower price bound for the Swiss Re
mortality bond 2003. As stated in [29], an incomplete mortality market that has
no arbitrage opportunities guarantees the existence of at least one risk-neutral
measure termed the equivalent martingale measure Q that can be used for calcu-
lating the fair prices of mortality securities. We rely on this fact and devise this
bounds for the mortality security in question without assuming any particular
model. Model-specific bounds can then be achieved by plugging in the requisite
models into the general bounds. The bound is extremely tight around the Monte
Carlo values as can be compared from the the respective tables for all three models.
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