Received: 05th January 2025

A NOTE ON COMPLEMENTS IN A LATTICE

KUNCHAM S.P., TAPATEE S.*, SRIDHARA K. B., KEDUKODI B.S., AND HARIKRISHNAN P.K.*

ABSTRACT. The concept of modular lattices naturally exhibit the links between the theoretical aspects of discrete structures and corresponding applications. In this paper, we consider the complements in a modular lattice with finite Goldie dimension (in short, *FGD*). We prove several properties and characterizations that involve θ -complement, θ -closed and relative θ -complemented, weak θ -complemented, etc in a lattice. We provide the necessary illustrations to justify the notions and generalizations in this paper.

1. Introduction

The notion of 'essential submodule' of a module over a ring is an analogy to the concept of 'dense subspace' in a topological space [2]. A submodule L is essential in a module M in case $K \cap L \neq (0)$, for each non-zero submodule K of M. However, as we know, a lattice need not contain a zero element, and so essentiality concept in a lattice with respect to an arbitrary element was introduced in [19]. Nevertheless, the concept of module over a ring is well interpreted in terms of the lattice structure of its submodules. Grzeszczuk and Puczylowski [9] established the idea of Goldie dimension from the module theory, to the modular lattices. They defined an essential element in a lattice with the least element 0. The theory has become significant and later many developments found in Calugareanu [6] wherein several ideas from modules over rings were generalized to the lattice theory. Goldie [10] introduced the concept of the Goldie dimension of modules over rings, and proved a characterization for a module to have finite Goldie dimension. Bhavanari [3] obtained several equivalent conditions in terms of descending chain conditions on essential submodules. There are good connections between semiprime ideals and uniform ideals of module over rings. Tapatee et.al [20, 21] studied relative essential ideals and relative complements and in [23], the authors studied the partial order aspects of modules over generalized rings. We refer to [19, 22] for the developments in modular lattices. The notion complement plays an important role in modules, specifically, as in [3, 21], to establish the dimension of a quotient submodule and the dimension of sum of two submodules. Analogously, in a lattice with 0, the notion pseudo-complement has been defined in [6], and some recent developments can be seen in [7]. Saki and Kiani [18] studied the properties of complements and pseudo-complements of finite modular lattices of subracks, and obtained some

²⁰⁰⁰ Mathematics Subject Classification. 16Y30.

Key words and phrases. complement; essential element; uniform element.

^{*} Corresponding author.

equivalent conditions. Rao and Beyene [16] have explored on irreducible elements in almost semilattices. The semi-complement undirected graph of lattice modules have been studied by Phadatare et.al [15].

In this paper, we consider a lattice (L, \wedge, \vee) with the smallest element 0 and whenever necessary we assume 1 to be the greatest element in L. For $x, y \in L$ and $x \leq y$, the interval between x and y is denoted by $[x, y] = \{a \in L \mid x \leq a \leq y\}$, is a sublattice of L. If $a \neq 1$ in L, then a is called proper. In a bounded lattice an element a is called an atom (respectively, dual atom) if there is no $x \in L$ such that 0 < x < a (respectively, a < x < 1).

In this paper, we deal with the modular lattices and define θ -complement and weak θ -complement which generalize both the notions pseudo-complement and complement in L. We prove several properties as generalizations of results in [6, 13], wherein the lattice is upper continuous.

For comprehensive literature in lattice theory, we refer to [8].

The following definitions are from [1, 6].

A subset \mathcal{D} of a poset is called upper directed, if each finite subset of \mathcal{D} has an upper bound in \mathcal{D} . A complete lattice L is called upper continuous if $a \land (\bigvee \mathcal{D}) = \bigvee_{d \in \mathcal{D}} (a \land d)$ holds for every $a \in L$ and every upper directed subset $\mathcal{D} \subseteq L$. L is

called modular if for any $x, y, z \in L$, $x \leq z$ implies $(x \vee y) \wedge z = x \vee (y \wedge z)$. If $y \in L$ is maximal with respect to the property $x \wedge y = 0$, then y is called a pseudo-complement of x in L. L is pseudo-complemented if for every $x \in L$, there exists a pseudo-complement in L, and is relative pseudo-complemented, if each sublattice of L is pseudo-complemented. In a lattice with 0 and 1, $y \in L$ is called a complement of $x \in L$ if $x \wedge y = 0$ and $x \vee y = 1$.

2. θ -complement

Throughout, let $\theta \in L$ be an arbitrary but fixed element, where L is a modular lattice.

Definition 2.1. [19]

- (1) $\theta \neq a \in L$ is θ -essential if $a \wedge x \neq \theta$ for every $\theta \neq x \in L$, we denote it as $a \leq_{\theta}^{e} L$. The set of all θ -essential elements in L is denoted by $E_{\theta}(L)$.
- (2) Let $x \leq y \in L$. Then x is θ -essential in y if $x \leq_{\theta}^{e} [\theta, y]$. In other words, $x \wedge k \neq \theta$ for every $k \in (\theta, y]$, denoted by $x \leq_{\theta}^{e} y$. In this case, we call y as θ -essential extension of x.
- (3) $a \in [x, y]$ is said to be θ -essential, if $\theta \in [x, y]$ and $a \wedge b \neq \theta$ for every $\theta \neq b \in [x, y]$.

Evidently, if $\theta = 0$, then the notion of ' θ -essential' coincides with the notion 'essential'.

Example 2.2. Let L be the lattice given in Fig. 1. Now $x \leq^e L$, for every $0 \neq x \in L$, whereas $x \leq^e_{\theta=b} L$, for every $\theta \neq x \in L$.

A NOTE ON COMPLEMENTS IN A LATTICE

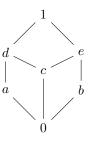


FIGURE 1

Example 2.3. [8] Consider the free distributive lattice L, on three generators given in Fig. 2. Then we have the following.

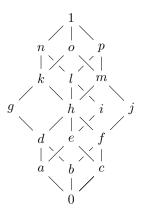


FIGURE 2

- (1) $e \leq_{\theta=b}^{e} p$, whereas $e \not\leq^{e} p$, since $e \wedge b = 0$ and $b \neq 0$. (2) $i \leq_{\theta=b}^{e} p$, whereas $i \not\leq^{e} p$, since $i \wedge b = 0$ and $b \neq 0$.

Definition 2.4. [6] A function $\phi: L_1 \to L_2$ between two lattices is called a lattice homomorphism if $\phi(x \lor y) = \phi(x) \lor \phi(y)$ and $\phi(x \land y) = \phi(x) \land \phi(y)$, for all $x, y \in L_1.$

Theorem 2.5. [6] If $s, t \in L$, then $[t, (s \lor t)]$ and $[(s \land t), s]$ are isomorphic.

Lemma 2.6. Let $f: L_1 \to L_2$ be an isomorphism and $a \leq_{\theta}^e L_1$ implies $f(a) \leq_{f(\theta)}^e$ L_2 .

Proof. Let $a \leq_{\theta}^{e} L_1$. Let $b \in L_2$ such that $f(a) \wedge b = f(\theta)$. Then $a \wedge f^{-1}(b) = \theta$. Since $a \leq_{\theta}^{e} L_1$ and $f^{-1}(b) \in L$, we get $f^{-1}(b) = \theta$. Therefore, $b = f(\theta)$. This shows that $f(a) \leq_{f(\theta)}^{e} L_2$.

Unlike in case of module over rings, essentiality need not be closed under homomorphic images. Indeed, in a lattice, the image of a θ -essential element under a KUNCHAM S.P., TAPATEE S.*, SRIDHARA K. B., KEDUKODI B.S., AND HARIKRISHNAN P.K.

lattice homomorphism need not be θ -essential. Consider the following example.

Example 2.7. Let L_1 and L_2 be two lattices given in Fig. 3. Let $f: L_1 \to L_2$ be a lattice homomorphism defined by f(x) = x, for $x \in \{0, a, b\}$ and f(c) = 0. Clearly, for $\theta = 0$, $a \leq_{\theta}^{e} L_1$, but $f(a) = a \not\leq_{f(\theta)=0}^{e} L_2$.

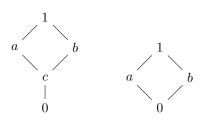


FIGURE 3. L_1 and L_2

Notation 2.8. If $a \leq_{\theta}^{e} c$, and $b \leq c$, then $a \leq_{\theta}^{e} b$.

Definition 2.9. [19] $S = \{a_i \mid i \in I, \text{ where } I \text{ is finite}\} \subseteq L \setminus \{\theta\}$, is said to be θ - \vee -independent if $a_i \wedge (\bigvee a_j) = \theta$, for every $i \in I$.

Definition 2.10. For any $a, b \in L$, an element a is θ -closed in b, if a has no proper θ -essential extension in b, we denote it by $a \leq_{\theta}^{cl} b$.

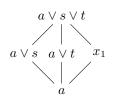


FIGURE 4

Proposition 2.11. For $\theta < a < b < c$ in L, if a is θ -closed in b and b is θ -closed in c, then a is θ -closed in c.

Proof. Suppose $a \leq_{\theta}^{cl} b, b \leq_{\theta}^{cl} c$, and $a \not\leq_{\theta}^{cl} c$. Then there exists $x \in L$ such that $a < x \leq_{\theta}^{cl} c$ and $a \leq_{\theta}^{e} x$. Now $x \wedge b \leq x$, implies $a \leq_{\theta}^{e} x \wedge b$. Since $a \leq_{\theta}^{e} x \wedge b \leq b$ and $a \leq_{\theta}^{cl} b$, we get $a = x \wedge b \cdots$ (1). If $x \leq b$, then a = x, a contradiction. So, $x \not\leq b$, and so $b < b \lor x \leq c$. Since, $b \leq_{\theta}^{cl} c$, it follows that $b \not\leq_{\theta}^{cl} b \lor x$, thus there exists s such that $\theta < s \leq b \lor x$ and

 $s \wedge b = \theta$. Now, $a \leq_{\theta}^{e} x, s \wedge x \leq x$ and $a \wedge (s \wedge x) \leq a \wedge s < b \wedge s = \theta$, implies $s \wedge x = \theta \cdots (2).$

If $a = (s \wedge x) \wedge b$, then

$$\begin{split} s &= s \wedge (b \lor x) \\ &= [s \wedge (s \wedge x)] \wedge (b \lor x) \\ &= s \wedge [((s \wedge x) \wedge b) \lor x], \text{ by modular law, } x \leq s \lor x \\ &= s \wedge (a \lor x) \\ &= s \wedge x \\ &= \theta, \end{split}$$

a contradiction. Hence, $a < (s \lor x) \land b \le b$. Since $a \le_{\theta}^{cl} b$, we get $a \not\le_{\theta}^{cl} (s \lor x) \land b$, thus there exists t such that $\theta < t \le (s \lor x) \land b$ and $a \land t = \theta \cdots (3)$. Then from (1) it follows that $x \land t = x \land (b \land t) = a \land t = \theta$. Thus, if $s \land (x \land t) = \theta$, then the (s, t, x) is θ -V-independent, and thus $t \land (x \lor s) = \theta$, a contradiction, since $\theta < t \le x \land s$. This shows that $s' = s \land (x \lor t) \neq \theta$. Moreover, from (3) it follows,

$$\begin{aligned} x \lor s' &= x \lor (s \land (x \lor t)) \\ &= (x \lor s) \land (x \lor t), \text{ by modular law, } x \le x \lor t \\ &= x \lor t \\ &\ge t \end{aligned}$$

So, we may replace s by s' without changing the validity of (3).

Therefore, we may assume that $\theta < s \leq x \lor t$ and $s \land b = \theta \dotsm (4)$.

Now from (2) and (4), $x \lor s = x \lor t$. Also since $a \land t \leq b \leq b$ and $s \land b = \theta$, we have $s \land (a \land t) = \theta$. Since $a \land t = \theta$, and by modular law, $\{a, s, t\}$ is θ - \lor -independent. Moreover, since $a \leq x$ and by (2), $x \land (a \lor s) = a \lor (x \land s) = a \lor \theta = a$. Similarly, by using the equality $x \land t = \theta$, yields $x \land (a \lor t) = a$. Let $x_1 = x \land (a \lor s \lor t)$. Next we claim that the elements $a \lor s$, $a \lor t$ and x_1 are the atoms of a lattice shown in Fig. 4, with bottom a and top $a \lor s \lor t$.

in Fig. 4, with bottom a and top $a \lor s \lor t$. Clearly, by modular law and the fact that $\{a, s, t\}$ is θ - \vee -independent, we get $(a \lor s) \land (a \lor t) = a \lor [s \land (a \lor t)] = a \lor \theta = a$. Again by modular law, since $a \le x_1 \le x$,

$$x_1 \wedge (a \vee s) = a \vee (x_1 \wedge s)$$

$$\leq a \vee (x \wedge s)$$

$$= a \vee (x \wedge t)$$

$$= x \wedge (a \vee t)$$

$$= a.$$

Now $x_1 \wedge (a \vee s) = a$, since $a \leq a \vee s$ and $a \leq x_1$. Clearly $x_1 \leq (a \vee s) \vee (a \vee t) = a \vee s \vee t$. Since $x \vee s = x \vee t \geq a \vee s \vee t$, we get $x_1 \vee (a \vee s) = (x \vee a \vee s) \wedge (a \vee s \vee t) = a \vee s \vee t$. Similarly, $x_1 \vee (a \vee t) = a \vee s \vee t$. From $a \wedge t = \theta$ and $t > \theta$, it follows that $a < a \vee t$, thus $a < x_1$. Now let $x_0 = x \land (s \lor t)$. Since $a \le x$ and by modularity, we get

$$x_0 \lor a = [x \land (s \lor t)] \lor a$$
$$= x \land (a \lor s \lor t)$$
$$= x_1$$
$$> a > \theta.$$

Thus $x_0 \lor a > \theta$, hence $x_0 > \theta$. Whereas,

$$a \wedge x_0 = a \wedge x \wedge (s \vee t)$$

= $a \wedge (s \vee t)$, as $a \le x$
= θ ,

a contradiction to the assumption that $a \leq_{\theta}^{e} x$.

The converse of the Proposition 2.11 not necessarily true.

Example 2.12. Let *L* be the lattice given in Fig. 2. Then for $\theta = 0$, $d \leq_{\theta}^{cl} l$, $d \leq_{\theta}^{cl} l$, but $h \not\leq_{\theta}^{cl} l$, as $h \wedge x \neq 0$, for all $x \in [0, l]$.

The following definition is a generalization of pseudo-complement defined in [6].

Definition 2.13. $c \in L$ is called a θ -complement of b in L if c is maximal with respect to $b \wedge c = \theta$. Further, L is θ -complemented if every $x \in L$ has at least one θ -complement.

Example 2.14. Let $L = (D_{30}, \leq)$, the elements are positive divisors of 30, given in the Fig. 5. Write $x \leq y \Leftrightarrow x \text{ divides } y, x \lor y = \text{l.c.m}\{x, y\}$ and $x \land y = \text{g.c.d}\{x, y\}$. Then, d is a $(\theta = b)$ -complement of f, but d is not a pseudo-complement of f,

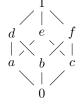


FIGURE 5

since $d \wedge f = b \neq 0$.

Definition 2.15. L is called relative θ -complemented if for every $x \in L$, $[\theta, x]$ is θ -complemented. Further, $x \in L$ is called a weak θ -complement if there exists $x' \in L$ such that $x \wedge x' = \theta$ and $x \vee x' = 1$. L is called weak θ -complemented if every $x \in L$ has at least one weak θ -complement in L.

Example 2.16. Let L be the non-modular lattice given in Fig. 6, of all subgroups of the group D_8 , the dihedral group of order 8. Then, f is a $(\theta = c)$ -complement of g, but f is not a pseudo-complement of g, since $f \wedge g = c \neq 0$.

A NOTE ON COMPLEMENTS IN A LATTICE

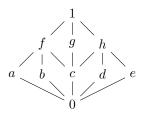


FIGURE 6

Example 2.17. Consider the Lattice L_1 given in Fig. 3. Here, for $(\theta = c)$, L_1 is θ -complemented, relative θ -complemented and weak θ -complemented. But L_1 is not pseudo-complemented or complemented, since $x \wedge y \neq 0$, for any $0 \neq x, y \in L_1$.

Lemma 2.18. Let $\theta \leq a \leq p \leq b$ be elements in L with 1, and r a weak θ complement of p in L. Then $q = (a \lor r) \land b = a \lor (r \land b)$, a weak θ -complement of p in [a, b].

Proof. Since r is weak θ -complement of p in L, we have $r \wedge p = \theta$ and $r \vee p = 1$. Now,

$$p \lor q = p \lor a \lor (r \land b)$$

= $p \lor (r \land b)$
= $(p \lor r) \land b$, since $p \le b$ and by modular law
= $1 \land b$
= b

and

$$p \wedge q = q \wedge p$$

= $(a \vee r) \wedge b \wedge p$
= $(a \vee r) \wedge p$
= $a \vee (r \wedge p)$, since $a \leq p$ and by modular law
= $a \vee \theta$
= a .

Therefore, q is a weak θ -complement of p in [a, b].

Corollary 2.19. A weak θ -complemented lattice is relative θ -complemented.

Proof. Follows from Lemma 2.18.

Definition 2.20. L is called θ -inductive, if every sublattice [x, y] of L satisfies the condition that: for any chain $\{b_i\}_{i \in I}$ in L and for any $a \in [x, y]$ with $a \wedge b_i = \theta$, for all $i \in I$, imply $a \land (\bigvee b_i) = \theta$. If $\theta = 0$, θ -inductive coincides with the inductive $i{\in}I$ defined in [6], and if L is upper continuous, then it is θ -inductive.

KUNCHAM S.P., TAPATEE S.*, SRIDHARA K. B., KEDUKODI B.S., AND HARIKRISHNAN P.K.

Notation 2.21. Every inductive lattice is θ -inductive. In a lattice of finite length, both inductive and θ -inductive exists. However, we may have an infinite lattice, which is θ -inductive but not inductive. Consider the infinite lattice $L = (\mathbb{Z}, \leq)$. Since the lattice has no least element, it is not inductive, whereas, L is $(\theta = 1)$ -inductive.

For any θ -inductive lattice L and $\theta \leq a \in L$, the set $S = \{x \in L : a \land x = \theta, b \leq x\}$ has a maximal element by Zorn's lemma, which will be a θ -complement of a in L. Precisely, we state the following Lemma.

Lemma 2.22. Let L be θ -inductive lattice. Then every $\theta \leq a \in L$ has a θ complement in L.

Corollary 2.23. If L is upper continuous, then every $\theta < a \in L$, has a θ -complement in L.

Proof. Follows from Lemma 2.22.

Lemma 2.24. Let $1 \in L$, and $a, b \in L$. Then b is a θ -complement of a if and only if $a \wedge b = \theta$ and $a \vee b \leq_{\theta}^{e} [b, 1]$.

Proof. Let b be a θ -complement of a in L. Clearly, $b \land a = \theta$, and for any $d \in L$, b < d implies $d \land a \neq \theta$. In particular, $d \in [b, 1]$, $d \neq b$ implies $d \neq \theta$. Then by modular law and since $d \land a \leq d \leq b$, we have $\theta \leq b < b \lor (d \land a) = (a \lor b) \land d$. Hence $(a \lor b) \land d \neq \theta$, shows that $a \lor b \leq_{\theta}^{e} [b, 1]$. Conversely, suppose that $a \land b = \theta$ and $a \lor b \leq_{\theta}^{e} [b, 1]$. Then, for every $d \in [b, 1]$, $d \neq b$, we have $b < (a \lor b) \land d = b \lor (a \land d)$. That is, $a \land b = \theta$, and for every b < d, we have $a \land d \leq b$. This implies $a \land d \neq \theta$.

Corollary 2.25. Let $1 \in L$ and b be a θ -complement of $a \in L$, then $a \wedge b = \theta$ and $a \vee b \leq_{\theta}^{e} L$.

Proof. Let b be a θ -complement of a in L. Then by Lemma 2.24, we have $a \wedge b = \theta$ and $a \vee b \leq_{\theta}^{e} [b, 1]$. Then clearly, $\theta \leq b$. To show, $a \vee b \leq_{\theta}^{e} L$, take $d \in L$. Case (i): If $\theta \neq d \leq b$, then $(a \vee b) \wedge d = d \neq \theta$. Therefore, $a \vee b \leq_{\theta}^{e} L$. Case (ii): If $d \nleq b$, then clearly $d \nleq \theta$. Now $b \leq b \vee d \in [b, 1]$, and by Lemma 2.24 and by modular law, we have $\theta \leq b \neq (a \vee b) \wedge (b \vee d) = ((a \vee b) \wedge d) \vee b$, shows that $a \vee b \leq_{\theta}^{e} L$.

Lemma 2.26. Let L be upper continuous and b be a θ -complement of a in L. If $c \in L$ is maximal such that $a \leq c, b \wedge c = \theta$, then c is maximal with respect to $a \leq_{\theta}^{e} c$.

Proof. Let $\mathcal{K} = \{y \in L : a \leq y, b \land y = \theta\}$. Since $a \in \mathcal{K}, \mathcal{K} \neq \emptyset$. By Zorn's lemma, \mathcal{K} has a maximal element, say c. To show $a \leq_{\theta}^{e} c$, let $x \in [\theta, c]$ such that

 $a \wedge x = \theta$. Now,

$$a \wedge (b \vee x) = (a \wedge c) \wedge (b \vee x)$$

= $a \wedge (c \wedge (b \vee x))$
= $a \wedge ((c \wedge b) \vee x)$, since $x \leq c$, by modularity
= $a \wedge (\theta \vee x)$
= $a \wedge x$
= θ .

Since b is θ -complement of a, we have $b \lor x = b$ implies $x \le b$. So, $x = x \land b \le c \land b = \theta$, implies $x \le \theta$. Therefore, $x = \theta$. For the maximality, let $a \le c'$, and $a \le_{\theta}^{e} c'$ such that $c \le c'$. Then by hypothesis, we have $b \land c' \ne \theta$. Therefore, $a \land (b \land c') \ne \theta$. But $a \land (b \land c') = (a \land b) \land c' = \theta \land c' = \theta$, a contradiction. \Box

Lemma 2.27. Let $\theta < a \in L$, where L is upper continuous. Then a is θ -closed if and only if a is a θ -complement.

Proof. Suppose a is a θ -complement of b in L. In a contrary, assume that $a \leq_{\theta}^{e} c$, for some $c \in L$. Since $a \leq c$, by maximality of a, we have $b \wedge c \neq \theta$. Moreover, since $a \leq_{\theta}^{e} c$ and $b \wedge c \in [\theta, c]$, we have $a \wedge (b \wedge c) \neq \theta$, whereas, $a \wedge (b \wedge c) = (a \wedge b) \wedge c = \theta \wedge c = \theta$, a contradiction. Conversely, since L is upper continuous, and $\theta < a \in L$, by Corollary 2.23, we have a has a θ -complement, say b'. That is, b' is maximal such that $b' \wedge a = \theta$. Now to show, a is θ -complement of b', let c be maximal with respect to $a \leq c$ and $b' \wedge c = \theta$. Then by Lemma 2.26, c is maximal with respect to $a \leq_{\theta}^{e} c$. But since a is θ -closed in L, we get a = c. Therefore, a is θ -complement of b'.

Proposition 2.28. Let L be θ -complemented. For any $b, c \in L$, if $b \wedge c = \theta$, $b \vee c \leq_{\theta}^{e} L$, and c is θ -essentially closed, then c is a θ -complement of b.

Proof. Let $b \wedge c = \theta$, $b \vee c \leq_{\theta}^{e} L$ and c is θ -essentially closed. In view of Lemma 2.24, it is enough to show $b \vee c \leq_{\theta}^{e} [c, 1]$. In a contrary, suppose that $(b \vee c) \wedge d = \theta$, for $\theta \neq d \in [c, 1]$. Now, $(b \vee c) \wedge d = \theta \leq c$ and $c \leq (b \vee c) \wedge d$. Therefore, $(b \vee c) \wedge d = c$. Since c is θ -closed, there exists $x \in L$ such that $\theta < x < d$, and $c \wedge x = \theta$. Then,

$$\begin{aligned} \theta &= c \wedge x \\ &= ((b \lor c) \land d) \land x \\ &= (b \lor c) \land (d \land x) \\ &= (b \lor c) \land x, \end{aligned}$$

a contradiction to $(b \lor c) \leq_{\theta}^{e} L$.

Notation 2.29. If $a \wedge b = \theta$ and $(a \vee b) \wedge c = \theta$, then $a \wedge (b \vee c) = \theta$.

Proof. Let $a \wedge b = \theta$ and $(a \vee b) \wedge c = \theta$. Then,

$$\begin{aligned} a \wedge (b \vee c) &\leq (a \vee b) \wedge (b \vee c) \\ &= ((a \vee b) \wedge c) \vee b, \text{ by modular law} \\ &= \theta \vee b \\ &= b. \end{aligned}$$

Hence $a \land (b \lor c) \le a \land b = \theta$. Also, $\theta \le a, \theta \le b \le (b \lor c)$, imply $\theta \le a \land (b \lor c)$. Therefore, $a \land (b \lor c) = \theta$.

Proposition 2.30. Let c, b be θ -complements of b, a respectively in L such that $a \leq c$. Then

- (1) b is a θ -complement of c in L; and $b \lor c \leq_{\theta}^{e} [b, 1];$
- (2) $a \leq_{\theta}^{e} c.$
- *Proof.* (1) Suppose b is maximal with respect to $b \wedge a = \theta$. Let $d \in L$ and $\theta \leq b < d$ such that $c \wedge d = \theta$. Then $a \wedge d \leq c \wedge d = \theta$. Also, since $\theta \leq a \wedge d$, we get $a \wedge d = \theta$, a contradiction to the maximality of b. Thus, b is θ -complement of c in L. Now, by Lemma 2.24, we get $b \lor c \leq_{\theta}^{e} [b, 1]$.
 - (2) To show, $a \leq_{\theta}^{e} c$, let $a \wedge d = \theta$, where $d \in [\theta, c]$. Now, $(a \vee d) \wedge b \leq c \wedge b = \theta$. Also, $\theta \leq a \leq (a \vee d), \theta \leq b$, implies $\theta \leq (a \vee d) \wedge b$. Therefore, $(a \vee d) \wedge b = \theta$. Then by Note 2.29, we have $a \wedge (d \vee b) = \theta$. Now, by maximality of b, we get $d \vee b = b$. Therefore, $d \leq b$ and $d \leq b \wedge c = \theta$, shows that $d = \theta$.

Proposition 2.31. Let b be a θ -complement of a in L. If $\theta < c \leq_{\theta}^{e} L$, then $b \lor c \leq_{\theta}^{e} [b, 1]$.

Proof. Let $d \in [b, 1]$ such that $(b \lor c) \land d = \theta$. Then clearly, $(b \lor c) \land d = \theta \le b$, and $b \le (b \lor c) \land d$, implies $(b \lor c) \land d = b$. Now, by modular law $b = (b \lor c) \land d = b \lor (c \land d)$, and so $c \land d \le b$. Then, $a \land (c \land d) \le a \land b = \theta$. Also, $\theta \le a$, $\theta \le c \le (c \land d)$ implies $c \land (a \land d) = a \land (c \land d) = \theta$. Since, $c \le_{\theta}^{e} L$, we get $a \land d = \theta$. Then by the maximality of b, we get $d = b = \theta$, and shows $b \lor c \le_{\theta}^{e} [b, 1]$.

Lemma 2.32. Let $1 \in L$, b < a in L and $a \leq_{\theta}^{e} [b, 1]$. Then $a \wedge c \leq_{\theta}^{e} [b \wedge c, c]$, for all $c \in L$.

Proof. Suppose $(a \land c) \land x = \theta$, where $x \in [b \land c, c]$. Now, taking the join with b on both side we get $[a \land (c \land x)] \lor b = \theta \lor b = \theta$, since $\theta \in [b, 1]$. By modular law, since b < a, we have $a \land [(c \land x) \lor b] = \theta$. Since $a \leq_{\theta}^{e} [b, 1]$ and $(c \land x) \lor b \in [b, 1]$, we get $(c \land x) \lor b = \theta$. Since $x \leq c$, $x \lor b = \theta$, and hence $x \leq \theta$. Also, $\theta \leq x$. Therefore, $x = \theta$, as desired.

Lemma 2.33. [19] Let $\theta < b < a$ be in L. Then, $a \leq_{\theta}^{e} L$ and $b \leq_{\theta}^{e} [\theta, a]$ if and only if $b \leq_{\theta}^{e} L$.

Notation 2.34. Let x, y be elements of L. If $x \vee y \leq_{\theta}^{e} L$, then $x \vee y \in [\theta, 1]$.

Lemma 2.35. Let $1 \in L$. If L is θ -complemented, then for every $a \in L$, $[\theta, a]$ is also θ -complemented.

Proof. Suppose L is θ -complemented. Let $x \in [\theta, a] \subseteq L$. By Corollary 2.25, there exists $y \in L$ such that $x \wedge y = \theta$ and $x \vee y \leq_{\theta}^{e} L$. Then by Note 2.34, we have $x \vee y \leq_{\theta}^{e} [\theta, 1]$. Now, $a \wedge (x \wedge y) = a \wedge \theta = \theta$, implies $x \wedge (y \wedge a) = \theta$. Then, by Lemma 2.32, $(x \vee y) \wedge a \leq_{\theta}^{e} [(\theta \wedge a), 1 \wedge a] = [\theta, a]$. Since $x \leq a$, by modular law we get $x \vee (y \wedge a) \leq_{\theta}^{e} [\theta, a]$. Therefore, $[\theta, a]$ is complemented.

Proposition 2.36. If $[\theta, a]$ is θ -complemented in L, for some $a \leq_{\theta}^{e} L$, then L is also θ -complemented.

Proof. Let $[\theta, a]$ be θ -complemented. For $x \in L$, $x \wedge a \in [\theta, a]$ has a θ -complement in $[\theta, a]$, say y. Then by Corollary 2.25, we have $y \wedge (x \wedge a) = \theta$, and $y \vee (x \wedge a) \leq_{\theta}^{e} [\theta, a]$. By Lemma 2.33, $y \vee (x \wedge a) \leq_{\theta}^{e} L$. Now to show $y \vee x \leq_{\theta}^{e} L$, let $z \in L$ such that $(y \vee x) \wedge b = \theta$. Then, $[(y \vee x) \wedge a] \wedge b \leq (y \vee x) \wedge b = \theta$. Also, since $\theta \leq b, \ \theta \leq [y \vee (x \wedge a)]$, implies $\theta \leq [y \vee (x \wedge a)] \wedge b$. Hence, $[y \vee (x \wedge a)] \wedge b = \theta$. Since $y \vee (x \wedge a) \leq_{\theta}^{e} L$, we get $b = \theta$. Thus $y \vee x \leq_{\theta}^{e} L$, shows that y is θ -complement of x in L.

Proposition 2.37. Let L is θ -complemented and $1 \in L$. If a is a θ -complement in L, then [a, 1] is also θ -complemented.

Proof. Suppose a is a θ -complement of b in L. Then, by Lemma 2.24, we have $a \wedge b = \theta$, and $a \vee b \leq_{\theta}^{e} [a, 1]$, and by Lemma 2.35, $[\theta, b]$ is also θ -complemented. Now, $[a, a \vee b] \cong [a \wedge b, b] = [\theta, b]$, is θ -complemented. That is, $[a, a \vee b]$ is θ -complemented. Therefore by Proposition 2.36, [a, 1] is θ -complemented.

Theorem 2.38. If b is a θ -complement of a in L and $\theta < c \leq_{\theta}^{e} L$, then b is a θ -complement of $a \wedge c$ in L.

Proof. Let b be a θ -complement of a in L. Then $a \wedge b = \theta$ and $a \vee b \leq_{\theta}^{e} L$. Clearly, $(a \wedge c) \wedge b = \theta$. Now let $d = a \vee b$ and $u = (a \wedge c) \vee b$. To show $u \leq_{\theta}^{e} L$, let $u \wedge y = \theta$, for some $y \in L$. Let $x = y \wedge d$. Now, $u \wedge x = u \wedge (y \wedge d) = (u \wedge y) \wedge d = \theta \wedge d = \theta$. Since $b \leq u$ by modular law, $u \wedge (b \vee x) = b \vee (u \wedge x)b \vee \theta = b$, and

$$\begin{aligned} \theta &= a \wedge b \\ &= a \wedge [u \wedge (b \lor x)] \\ &= a \wedge [(a \wedge c) \lor b] \wedge (b \lor x). \end{aligned}$$

Now since $a \wedge c \leq a$ and by modularity we get $\theta = [(a \wedge c) \lor (a \wedge b)] \land (b \lor x) = (a \land c) \land (b \lor x)$. Since $c \leq_{\theta}^{e} L$, we get $a \land (b \lor x) = \theta$. Then,

$$b = b \lor \theta$$

= $b \lor [a \land (b \lor x)]$
= $(b \lor x) \land (b \lor a)$, by modular law, $b \le b \lor x$
= $b \lor x$,

which implies $x \leq b$. Now $\theta = u \wedge x \geq b \wedge x = x$. Also, $\theta \leq x$, implies $x = \theta$. Since $d \leq_{\theta}^{e} L$, we get $y = \theta$. Thus, b is θ -complement of $a \wedge c$ in L.

Conclusions

We have defined the module theoretical concepts such as θ -complement, θ -closed and relative θ -complemented in a lattice. In a modular lattice, we have proved characterizations involving θ -complements with necessary illustrations. The results can be extended to study the dual aspects like supplements, superfluous and radicals etc. in a lattice. Possibly, one can study the concepts in hyperlattices, as the authors explored several hyperstructural aspects of lattices in [17, 14].

Acknowledgment

All the authors thank the referees for their careful reading and suggestions. A part of this research work is carried out during the collaborative visit of author² at Manipal Institute of Technology, Manipal under the award number INSA/SP/VSP-56/2023-24/. The author² acknowledges MIT Bengaluru, Manipal Academy of Higher Education, Manipal, and the authors^{1,3,4} acknowledge Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal Academy of Higher Education, Manipal, and the authors^{1,3,4} acknowledges SERB, Govt. of India for the Teachers Associateship for Research Excellence (TARE) fellowship TAR/2022/000219.

References

[1] Alizade R, Toksoy S (2009) Cofinitely weak supplemented lattices. Indian J. Pure Appl. Math. **40**:337-346.

[2] Anderson FW, Fuller KR (1992) Rings and Categories of Modules Graduate Texts in Mathematics (Springer-Verlag New York).

[3] Bhavanari S (1990) On modules with finite Goldie Dimension. J. Ramanujan Math. Soc. ${\bf 5}(1):61\text{-}75.$

[4] Bhavanari S, Kuncham SP (2003) An Isomorphism Theorem on Directed Hypercubes of dimension n. Indian J. pure appl. Math. 34(10):1453-1457.

[5] Bhavanari S, Kuncham SP (2014) Discrete Mathematics and Graph theory (Prentice Hall learning Ltd. Second edition).

[6] Calugareanu G (2003) Lattice concepts of module theory 22 (Springer Science & Business Media).

[7] Chajda I, Länger H (2021) Filters and congruences in sectionally pseudocomplemented lattices and posets. Soft Computing. 25:8827–8837.

[8] Gratzer G (2011) Lattice theory: foundation Springer Science & Business Media.

 [9] Grzeszczuk P, Puczyłowski ER (1984) On Goldie and dual Goldie dimensions. J. Pure Appl. Algebra. 31(1-3):47-54.

[10] Goldie AW (1972) The structure of Noetherian rings In Lectures on Rings and Modules. (Springer), Berlin, Heidelberg, 246:213-321.

[11] Lopez AF, Rus EG (1998) Algebraic lattices and nonassociative structures. Proceedings of the American Mathematical Society. 3211-3221.

[12] Nimbhorkar SK, Shroff RC (2017) Goldie extending elements in modular lattices. Math. Bohem. 142(2):163-180.

[13] Nimbhorkar S, Deshmukh V (2020) The essential element graph of a lattice. Asian-Eur. J. Math. ${\bf 13}(01){:}2050023$ (9 pages). https://doi.org/10.1142/S1793557120500230

[14] Pallavi P, Kuncham SP, Vadiraja GRB, Harikrishnan PK (2022) Computation of prime hyperideals in meet hyperlattices, Bull. Comput. Appl. Math. 10(01):33-58.

[15] Phadatare N, Vilas K, Sachin B (2019) Semi-complement graph of lattice module. Soft Computing 23:3973-3978. [16] Rao GN, Beyene TG (2019) Relative Annihilators and Filters in Almost Semilattice. Southeast Asian Bull. Math. 43(4):553–576.

[17] Rasouli S, Davvaz B (2010) Lattices derived from hyperlattices. Comm. Algebra 38(8):2720-2737.

[18] Saki A, Kiani D (2021) Complemented lattices of subracks. Journal of Algebraic Combinatorics, 53(2): 455-468.

[19] Tapatee S, Kedukodi BS, Shum KP, Harikrishnan PK, Kuncham SP (2021) On essential elements in a lattice and Goldie analogue theorem. Asian-Eur. J. Math. 15(05):2250091. https://doi.org/10.1142/S1793557122500917

[20] Tapatee S, Davvaz B, Harikrishnan PK, Kedukodi BS, Kuncham SP (2021) Relative Essential Ideals in N-groups. Tamkang J. Math. 54(01):69-82. https://doi.org/10.5556/j.tkjm.54.2023.4136

[21] Tapatee S, Kedukodi BS, Harikrishnan PK, Kuncham SP (2021) On the finite Goldie dimension of sum of two ideals of an *R*-group, Discuss. Math. Gen. Algebra Appl. 43(02):177-187. https://doi.org/10.7151/dmgaa.1419

[22] Tapatee S, Harikrishnan PK, Kedukodi BS, Kuncham SP (2022) Graph with respect to superfluous elements in a lattice. Miskolc Math. Notes 23(02):929-945. DOI:10.18514/MMN.2022.3620

[23] Tapatee S, Meyer JH, Harikrishnan PK, Kedukodi BS, Kuncham SP (2022) Partial Order in Matrix Nearrings. Bull. Iranian Math. Soc. 48(06):3195-3209. https://doi.org/10.1007/s41980-022-00689-w

Kuncham S.P.: Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, 576104, India

 $Email \ address: \verb"syamprasad.k@manipal.edu"$

TAPATEE S.: DEPARTMENT OF MATHEMATICS, MANIPAL INSTITUTE OF TECHNOLOGY BEN-GALURU, MANIPAL ACADEMY OF HIGHER EDUCATION, INDIA Email address: sahoo.tapatee@manipal.edu

SRIDHARA K. B.: DEPARTMENT OF MATHEMATICS, MANIPAL INSTITUTE OF TECHNOLOGY BEN-GALURU, MANIPAL ACADEMY OF HIGHER EDUCATION, INDIA

 $Email \ address: \ \tt{sridhara.mitblr2024@learner.manipal.edu}$

KEDUKODI B.S.: DEPARTMENT OF MATHEMATICS, MANIPAL INSTITUTE OF TECHNOLOGY, MA-NIPAL ACADEMY OF HIGHER EDUCATION,576104, INDIA *Email address*: babushrisrinivas.k@manipal.edu

HARIKRISHNAN P.K.: DEPARTMENT OF MATHEMATICS, MANIPAL INSTITUTE OF TECHNOLOGY BENGALURU, MANIPAL ACADEMY OF HIGHER EDUCATION,576104, INDIA Email address: pk.harikrishnan@manipal.edu