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Abstract. A necessary and sufficient condition for sum of secondary range
symmetric matrices to be secondary range symmetric is given here. Also, the

concept of parallel summable secondary range symmetric matrices and some

of its characterizations are being explored.

1. Introduction

The concepts of secondary symmetric matrices is introduced by [4]. Vijayaku-
mar et.al [2], [3], [12] defined the concept of secondary normal matrices and its
characterizations. Based on this concept, secondary generalized inverses and its
characterizations are obtained in [7]. Drazin theta inverse [10] is a generalized
inverse of a matrix A, obtained by combining Drazin inverse as well as the sec-
ondary conjugate transpose of the matrix A. For more porperties and definitions
involving secondary (conjugate) transpose, one can refer [10], [8], [9].

In this article, we give essential conditions for sum of secondary range symmetric
matrices to be secondary symmetric. Also, the parallel summability of secondary
range symmetric matrices are obtained. Below are some preliminary results from
the literature.

2. Preliminaries

Throughout this article, Cm×n represents the set of all matrices over complex
field.

Definition 2.1. [1] A− is a generalized inverse (g-inverse) of A if AA−A = A.

Definition 2.2. [1] A matrix A ∈ Cn×n is range symmetric (or EP) if Null(A) =
Null(A∗).

Definition 2.3. [7] A†s is a secondary generalized inverse of A if AA†sA = A,
A†sAA†s = A and AA†s , A†sA are secondary symmetric.

Definition 2.4. [2] Let A ∈ Cn×n. Then the conjugate secondary transpose of A

denoted by Aθ and is defined as Aθ = A
s
= (cij) where cij = an−j+1,n−i+1.

Whenever we consider the matrix on set of real numbers, the secondary conju-
gate transpose Aθ reduces to secondary transpose AS .
A relation connecting the transpose and secondary transpose of the matrix A is,

2000 Mathematics Subject Classification. Primary 15A09, 15A24; Secondary 65F05.

Key words and phrases. EP matrix, secondary transpose, secondary generalized inverse.

Global and Stochastic Analysis     
Vol. 11 No. 3 (June, 2024)    
 
 
Received: 12th April 2024               Revised: 27th May 2024           Accepted: 30th May 2024   

60



DIVYA SHENOY PURUSHOTHAMA*

AS = V ATV where V is a permutation matrix having unity in the secondary
diagonal.

Definition 2.5. [11] A matrix A ∈ Rn×n secondary range symmetric if and only
if Null(A) = Null(AS)

Theorem 2.6. [11] Let A ∈ Rn×n. Then the following conditions are equivalent.

(i) A is secondary range symmetric
(ii) V A is range symmetric
(iii) AV is range symmetric
(iv) Null(A∗) = Null(AV )
(v) C(A) = C(AS)
(vi) AS = PA = AQ where P and Q are some nonsingular matrices
(vii) C(A∗) = C(V A)
(viii) C(A∗)⊕Null(A) = Cn

(ix) C(A)⊕Null(A∗) = Cn

3. Results

Lemma 3.1. Let A1, A2, ...Ak ∈ Rn×n. If A =
∑k

i=1 Ai, then AS =
∑k

i=1 A
S
i

Proof. By definition AS
i = V A∗

i V for i = 1, 2, ...k.

To prove AS =
∑k

i=1 A
S
i ,

Given A =
∑S

i=1 Ai.
Now,

AS = V (A1 +A2 + ...+Ak)
∗V

= V (A∗
1 +A∗

2 + ...+A∗
k)V

= AS
1 +AS

2 + ...+AS
k

Hence AS =
∑k

i=1 A
S
i .

□

Lemma 3.2. Let A,B ∈ Rn×n, then

(i) (AB)S = BSAS

(ii) (AS)S = A

Proof.

By definition(AB)S = V (AB)∗V

= V (B∗A∗)V

= (V B∗V )(V A∗V )

= BSAS

(ii) follows from (i) since (AS)S = (V A∗V )S = V (A∗)SV = A. □

Lemma 3.3. [5] Let A1, A2, ..., Ak ∈ Cn×n and let A =
∑k

i=1 Ai. Consider the
following conditions.

(i) Null(A) ⊆ Null(Ai); i = 1, 2, ..., k
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(ii) Null(A) =
k⋂

i=1

Null(Ai)

(iii) rank(A) = rank


A1

A2

.

.
Ak


(iv)

∑k
i=1

∑n
i=1 A

∗
iAj = 0

(v) rank(A) =
∑k

i=1 rank(Ai)

Then the following statement hold:

(a) (i), (ii), (iii) are equivalent.
(b) conditions (iv) implies (i) but the converse is not true.
(c) conditions (v) implies (i) but not the converse.

Theorem 3.4. Let Ai(i = 1, 2, ..., k) be secondary range symmetric. Assume any

one of the condition of previous lemma holds. Then A =
∑k

i=1 Ai is secondary
range symmetric.

Proof. Since each Ai is secondary range symmetric, by definition 2.5, Null(Ai) =
Null(AS

i ) for each i = 1, 2, ..., k. By the given condition

Null(A) ⊆ Null(Ai)

we get

Null(A) ⊆
k⋂

i=1

Null(Ai) =

k⋂
i=1

Null(AS
i )

Now,

x ∈ Null(A) ⊆
k⋂

i=1

Null(AS
i ) =⇒ x ∈ Null(AS

i ), for i = 1 to k

=⇒ AS
i x = 0, for i = 1 to k

=⇒ (AS
1 +AS

2 + ...+AS
k )x = 0

=⇒ ASx = 0

k⋂
i=1

Null(AS
i ) ⊆ Null(AS)

Null(A) ⊆
k⋂

i=1

Null(AS
i ) ⊆ Null(AS) and ρ(A) = ρ(AS) implies Null(A) =

Null(AS). Thus A =
k⋂

i=1

Ai is secondary range symmetric. □

The converse of the above theorem is not true.

Let A1 =

(
0 1
1 0

)
and A2 =

(
0 −1
0 0

)
.

Assume A = A1 +A2 =

(
0 0
1 0

)
.
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Here, A1, A2 and A are secondary range symmetric matrices.
But Niull(A1 +A2) ⊈ Null(A).
If A and B are secondary range symmetric matrices, then by Theorem 2.6 AS =
P1A and BS = P2A where P1 and P2 are non singular square matrices. If P1 = P2,
say P , then AS +BS = P (A+B) = (A+B)S which implies A+B is secondary
range symmetric.

Theorem 3.5. Let A and B be secondary range symmetric matrices, then AS =
P1A and BS = P2B such that P1 − P2 is a non singular matrix. Then A + B is
secondary range symmetric iff Null(A+B) ⊆ Null(B).

Proof. Since AS = P1A and BS = P2B, from theorem 2.6, the matrices A and
B are secondary range symmetric. Since Null(A + B) ⊆ Null(B), we can see
that Null(A + B) ⊆ Null(A). Hence by theorem 3.4, A + B is secondary range
symmetric.

Conversly, let us assume that A + B is secondary range symmetric. Now by
Theoem 2.6, (A+B)S = P (A+B)
which implies

P (A+B) = AS +BS = P1A+ P2B

(P1 − P )A = (P − P2)B

EA = FB

where E = P1 − P and F = P − P2 such that E + F = P1 − P2.

EA+ FA = EB + FA

(E + F )A = F (A+B)

By hypothesis E+F = H1−H2 is non singular. Null(A+B) ⊆ Null[F (A+B)] =
Null[(E + F )A] = Null(A). Similarly we can see that Null(A + B) ⊆ Null(B).
Thus A + B is secondary range symmetric implies Null(A + B) ⊆ Null(A) and
Null(B). Hence the Theorem. □

4. Parallel summable secondary range symmetric matrices

Definition 4.1. [6] Let A,B ∈ Cm×n matrices. If Null(A + B) ⊆ Null(B) and
Null(A + B)∗ ⊆ Null(B∗) or Null(A + B) ⊆ Null(A) and Null(A + B)∗ ⊆
Null(A∗) then the matrices A and B are said to be parallel summable.

Definition 4.2. [6] If two matricesA and B are parallel summable, then the
parallel sum of is denoted by A : B is defined as A : B = A(A+B)−B.

Lemma 4.3. Let A and B be matrices. Then Null(A∗) ⊆ Null(B∗) if and only
if Null(AS) ⊆ Null(BS)
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Proof. Assume that Null(A∗) ⊆ Null(B∗)

x ∈ Null(AS) =⇒ ASx = 0

=⇒ V A∗V x = 0

=⇒ A∗V x = 0

=⇒ A∗y = 0 where y = V x

=⇒ y ∈ Null(A∗) ⊆ Null(B∗)

=⇒ B∗y = 0

=⇒ B∗V x = 0

=⇒ BSx = 0

=⇒ x ∈ Null(BS)

Thus Null(AS) ⊆ Null(BS).
Conversly, let us assume that Null(AS) ⊆ Null(BS). We need to show that
Null(A∗) ⊆ Null(B∗).
Let us choose

x ∈ Null(A∗) =⇒ A∗x = 0

=⇒ (V A∗V )V x = 0

=⇒ ASV x = 0

=⇒ ASy = 0

=⇒ y ∈ Null(AS) ⊆ Null(BS)

=⇒ BSy = 0

=⇒ V B∗V V x = 0

=⇒ V B∗x = 0

=⇒ B∗x = 0

=⇒ x ∈ Null(B∗)

Thus Null(A∗) ⊆ Null(B∗). Hence the Lemma. □

Definition 4.4. A pair of matrices A and B are said to be secondary parallel sum-
mable if Null(A+B) ⊆ Null(B) and Null(A+B)S ⊆ Null(BS) or equivalently
Null(A+B) ⊆ Null(A) and Null(A+B)S ⊆ Null(AS)

5. Properties

Let A and B be a pair of secondary parallel summable matrices.

(i) A : B
(ii) AS and BS are secondary parallel summable and (A : B)S = AS : BS

(iii) If C is a non singular matrix, then CA and CB are parallel summable and
CA : CB = C(A : B)

(iv) Null(A : B) = Null(A) +Null(B)
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Proof. Here we need to prove only (ii), A and B are secondary range symmetric,
AS and BS are range symmetric follows from Lemma 3.1 and 3.2.

AS : BS = AS(AS +BS)−BS

= AS [(A+B)S ]−BS

= AS [(A+B)−]SBS

= [B(A+B)−A]S

= [A(A+B)−B]S

= [A : B]S

□

Lemma 5.1. Let A and B be secondary range symmetric matrices. Then A and
B are parallel summable secondary range symmetric if and only if Null(A+B) ⊆
Null(A)

Proof. A and B are parallel summable, by definition 4.1 it follows that Null(A+
B) ⊆ Null(A).
Conversly, if Null(A + B) ⊆ Null(A), then Null(A + B) ⊆ Null(B). Since A
and B are secondary range symmetric, A + B is secondary range symmetric by
Theorem 3.4. Hence Null(A+ B) = Null(A+ B)S and Null(A+ B) ⊆ Null(A)
implies Null(A+B)S ⊆ Null(AS). Then by Definition 4.1, A and B are parallel
summable secondary range symmetric. Hence the proof. □

If A or B is not secondary range symmetric matrix, the above lemma is not true.
Consider the following example:

Let A =

(
0 1
0 0

)
and AS =

(
0 1
0 0

)
. Here A is secondary range symmetric matrix.

Also, let B =

(
0 0
0 1

)
and BS =

(
1 0
0 0

)
. It is clear that B is not secondary range

symmetric.

Now, A+ B =

(
0 1
0 1

)
and (A+ B)S =

(
1 1
0 0

)
. Here Null(A+ B) ⊆ Null(A),

but Null(A+B)S ⊈ Null(AS) and Null(BS). Hence A and B are not secondary
parallel summable.

Theorem 5.2. Let A and B be parallel summable secondary range symmetric.
Then A : B and A+B are secondary range symmetric.

Proof. Since A and B are parallel summable secondary range symmetric, Null(A+
B) ⊆ Null(A) and Null(A+B) ⊆ Null(B), follows from above lemma. Now the
fact that A+B is secondary range symmetric follows from Theorem 3.4. A : B is
secondary range symmetric runs as follows.
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Null(A : B)S = Null(AS : BS)

= Null(AS) +Null(BS)

= Null(A) +Null(B)

= Null(A : B)

Thus A : B is secondary range symmetric whenever A and B are parallel summable
secondary range symmetric. Hence the theorem. □

6. Conclusion

In general, the sum of two secondary range symmetric matrices need not be sec-
ondary range symmetric. We obtained a necessary and sufficient condition for sum
of secondary range symmetric matrices to be secondary range symmetric. Simi-
lary, the essential conditions for product of secondary range symmetric matrices
to be secondary range symmetric can be a topic for further research.
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