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Abstract. Graph Neural Networks (GNNs) have emerged as powerful tools

for learning representations of graph structured data, finding applications in
diverse fields such as social network analysis, recommendation systems, and

molecular chemistry. In this master’s thesis, we present a thorough examina-

tion of state-of-the- art message-passing neural networks, including but not
limited to Graph Convolutional Networks (GCN), Graph Attention Networks

(GAT), GraphSAGE, and Approximate Personalized Propagation of Neural

Predictions (APPNP). Our study begins with a detailed exploration of the
foundational concepts and theoretical underpinnings of message-passing neu-

ral networks. We delve into the fundamental mechanisms of information

propagation across nodes within a graph, elucidating the various aggregation
and diffusion strategies employed by different architectures. Subsequently,

a comprehensive review of existing GNN models is undertaken, providing a
comparative analysis of their strengths, weaknesses, and unique characteris-

tics. This work contributes a concise yet comprehensive overview, aiding re-

searchers and practitioners in understanding the evolving landscape of graph
representation learning.

1. Introduction

In recent years, the explosion of data in various domains has led to an increased
interest in harnessing the power of graph structures for modeling complex rela-
tionships [10, 7, 2, 4, 5]. Graphs, which consist of nodes and edges representing
entities and their connections, respectively, have emerged as a fundamental data
representation in fields such as social networks [7], recommendation systems, bi-
ology, chemistry, and more. As the diversity and complexity of graph-structured
data grow, so does the demand for advanced tools to analyze and understand these
intricate relationships.

This surge in interest has sparked the development of a remarkable class of
machine learning models known as Graph Neural Networks (GNNs) [22, 24, 19].
GNNs are a novel approach to learning representations from graph-structured
data, enabling us to capture both local and global information of nodes in a uni-
fied manner [21, 11]. In essence, GNNs extend the neural network architecture to
accommodate graph data, where nodes represent entities and edges denote rela-
tionships. This extension opens the door to a multitude of applications, ranging
from node classification [20, 8, 15] and link prediction to graph-level tasks like
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community detection [1, 9] and molecular property prediction [17, 16]. GNNs
leverage the underlying graph structure to enable information propagation and
aggregation, enabling them to capture intricate patterns that traditional machine
learning models struggle to discern.

This article aims to provide a comprehensive panorama of the most popular
form of GNNs, which is message passing neural networks. We present a thorough
examination of state-of-the-art message-passing neural networks, including but
not limited to Graph Convolutional Networks (GCN) [6], Graph Attention Net-
works (GAT) [13], GraphSAGE [5], and Approximate Personalized Propagation of
Neural Predictions (APPNP) [3]. Our study begins with a detailed exploration of
the foundational concepts and theoretical underpinnings of message-passing neural
networks. We delve into the fundamental mechanisms of information propagation
across nodes within a graph, elucidating the various aggregation and diffusion
strategies employed by different architectures. Subsequently, a comprehensive re-
view of existing GNN models is undertaken, providing a comparative analysis of
their strengths, weaknesses, and unique characteristics. This work contributes a
concise yet comprehensive overview, aiding researchers and practitioners in under-
standing the evolving landscape of graph representation learning.

2. Background

Semi-supervised learning Semi-supervised learning (SSL) is a machine learn-
ing technique that combines elements of both supervised and unsupervised learn-
ing. It operates on a dataset that is partially labeled. The primary objective of
SSL is to address the limitations of purely supervised and unsupervisedmethods.
Supervised learning typically requires a large amount of labeled data to accurately
classify test data, which can be both costly and time-consuming to obtain. In con-
trast, unsupervised learning does not require labeled data and groups data points
based on similarity, but it often fails to accurately classify unknown data.

SSL offers a solution to these challenges by leveraging a small amount of labeled
data alongside a larger pool of unlabeled data. This approach enables the model
to learn from the labeled examples and generalize to label the unlabeled data
effectively. SSL constructs a model using a limited set of labeled patterns as
training data, while the remaining patterns are treated as test data. In this article,
our focus in on semi-supervised classification in graph neural networks.

2.0.1. Semi-Supervised Classification. Semi-Supervised Classification (SSC) is an
approach similar to supervised learning but requires less training data to classify a
large amount of test data. By utilizing SSC, the dependency on extensive training
data is reduced. In the research community, a significant amount of unlabeled
data is readily available, whereas labeled data is scarce due to the cost and time
associated with generating it [12]. In [14], the authors proposed an approxima-
tion solution for labeling test patterns using a selective incremental transductive
nearest neighbor classifier (SI-TNNC). They compared their results across five di-
verse datasets and five different algorithms, demonstrating that SI-TNNC achieved
higher accuracy than standard algorithms like ID3 and 3NN in three out of five
cases.
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2.1. Message Passing Graph Neural Networks (MPGNN). A GNN is a
neural network architecture designed to operate on graph-structured data. The
core idea of a GNN is to iteratively aggregate information from neighboring nodes
and update the node features through multiple layers. Consider a graph denoted
as G(V,E), where V represents the set of nodes and E is the set of edges (or links),
with E ⊆ V × V . In the context of Graph Neural Networks (GNNs), the primary
objective is to learn effective representations for nodes, links, and even entire
graphs. This is achieved through a fundamental process called message-passing,
as defined by Gilmer et al. [4] and elaborated by Zhang et al. [23].

In matrix form, a graph is represented by an adjacency matrix A, which is an
n × n matrix where Auv denotes the connection between nodes u and v. If there
is an edge between nodes u and v, then Auv = 1; otherwise, Auv = 0. Let D be
a diagonal matrix with Dv,v =

∑
u Avu, where Dv,v represents the degree of the

v-th vertex. Avu represents the adjacency matrix element corresponding to the
connection between vertices v and u, with each entry corresponding to the sum of
the rows in the adjacency matrix, thereby ensuring a normalized representation.

Once we have the adjacency matrix of a graph, we proceed to the message aggre-
gation phase. In this step, each node aggregates information from its neighboring
nodes. The process is described by the following equation:

mv
k =

∑
u∈N(v)

Mk(h
(k−1)
v , h(k−1)

u , euv)

Here, N(v) denotes the neighborhood of node v, h
(k−1)
v represents the repre-

sentation of node v at the (k− 1)-th layer, h
(k−1)
u represents the representation of

node u at the (k − 1)-th layer, and euv is the edge connection from node u to v.
Mk is the message function that takes these inputs and generates the message to
be passed from each neighboring node u to node v. mv

k represents the aggregated
message passed from all neighboring nodes u to v. After the aggregation process,
the node features, including those from neighboring nodes, are combined through
a weighted sum or a learned aggregation function:

avk = AGGREGATE(mv
k ∪ h(k−1)

v )

Here, AGGREGATE combines the messages and previous features, typically
using mean or sum. The nodes then update their hidden representations based on
the aggregated message from their neighbors and their own feature vector. This
update process is described by the following equation:

hv
k = uk(h

(k−1)
v , avk)

In this equation, avk is the aggregated message, and uk is the update function
that concatenates the aggregated message with the current node representation.
The final node representations hv

k after k layers can be used for downstream tasks:

h(k)
v = COMBINE(h(k−1)

v ,AGGREGATE(h(k−1)
u |u ∈ N(v)))

In this equation, h
(k−1)
v represents the representation of node v at the (k−1)-th

layer, and N(v) signifies the set of neighbors of node v. This final representation
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h
(k)
v captures the combined information from both the node’s own features and its

neighborhood, which can then be utilized for various tasks such as node classifi-
cation or link prediction.

3. Graph Convolutional Network (GCN)

A Graph Convolutional Network (GCN) is a type of neural network designed to
operate on graph-structured data. It uses convolutional operations to process and
analyze the relationships between nodes in a graph. Consider the graph G(V,A),
where A ∈ Rn×n represents an adjacency matrix characterized by its symmetry,
indicating the presence of edges between nodes. In GCNs, the aggregation pro-
cess involves computing the average of the features of neighboring nodes. This is
facilitated by leveraging the Degree Matrix D:

D−1A = AVERAGE

where D−1 is the inverse of the degree matrix, and A is the adjacency matrix.
In a GCN, each node v is associated with an initial feature vector represented by
xv. For the k-th graph convolution layer, the input node features are represented
by H(k−1), and the output node features are represented by H(k) [18]: H(0) = x.
This indicates the first input layer of the GCN.

The message passing phase involves aggregating information from neighboring
nodes. The aggregate and combine functions are represented by the following
equation:

H(k)
v =

n∑
u=1

avu

(
1√
dv

1√
du

)
h(k−1)
u wk +

1

dv
h(k−1)
v wk

Here, the AGGREGATE function calculates the average value of the neighbor-
ing node representations. Each neighbor’s contribution is weighted based on the
weight of the edge between the node and its neighbor. This weight is determined
by dividing the weight of the edge by the degrees of the two nodes involved, rep-
resented by wk. The COMBINE function takes the aggregated messages from the
neighbors and adds them to the node’s own representation, normalized by its own
degree [6]. This equation can be normalized using a simple matrix operation:

S = D− 1
2 ÃD− 1

2

where Ã = A+ I is the adjacency matrix with self-loops, and I is the identity
matrix. The final feature representation H(k) is then generated by applying a
nonlinear activation function, commonly ReLU, pointwise:

H(k) = ReLU(H(k)
v Wk)

The pointwise nonlinear transformation is applied to the features in the k-th
layer, and these transformed features are then propagated to the (k + 1)-th layer
[18].
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4. Graph Sampling and Aggregation (GrahSAGE)

operates by sampling and aggregating data from each node’s neighborhood in
a graph. The primary idea behind GraphSAGE is to create node embeddings by
gathering information from neighboring nodes. Each node v is associated with
features xv, and the goal is to learn node embeddings for each node. The ag-
gregation process involves the following steps: For each node v, a sample of K
neighbors is taken from its neighborhood, denoted as N(v). The mean of the fea-
tures of the neighboring nodes is computed. This mean aggregator is similar to
the Graph Convolutional Network (GCN) framework [5]. The overall process can
be described using the following equation:

h(k)
v = σ

(
W ·mean

({
h(k−1)
u |u ∈ N(v)

}
∪
{
h(k−1)
v

}))
where h

(k)
v represents the embedding of node v at layer k, W is a weight matrix,

MEAN denotes the mean aggregation function, and σ is an activation function.
An alternative, more complex aggregator examined in GraphSAGE is based on

the LSTM (Long Short-Term Memory) architecture, which has a larger expressive
capability compared to the mean aggregator. However, LSTMs are not naturally
symmetric since they process inputs sequentially. To adapt LSTMs for use with an
unordered set, they are applied to a random permutation of the node’s neighbors:

hv = LSTMAgg(v, P (N(v)))

where hv represents the aggregated representation for node v, LSTMAgg is the
LSTM aggregation function, and P (N(v)) is a random permutation of the neigh-
bors of v. The aggregated representations are passed through a fully connected
layer, activated, and max-pooled to aggregate information across neighbors:

k = max
(
σ
(
Wpoolh

(k)
u − b

)
,∀u ∈ N(v)

)
where k is the final aggregated representation, Wpool is a weight matrix for the

pooling operation, h
(k)
u is the representation of neighbor u at layer k, and b is a bias

term. These steps outline the key processes in GraphSAGE for generating node
embeddings by sampling and aggregating information from neighboring nodes.

5. Graph Attention Network (GAT)

Graph Attention Networks (GATs) enhance node embeddings by assigning dif-
ferent importance weights to neighboring nodes through attention mechanisms,
leading to more informative and effective representations for downstream tasks.
The process involves several key steps: We begin by setting up the node represen-
tations, denoted as hu

0 . These initial representations can be initialized randomly
or based on predefined features. Let the initial hidden layer representation for
every node be defined with dimension F :

h =
(
h⃗1, h⃗2, ..., h⃗N

)
, h⃗v ∈ RF
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where N is the number of nodes. The output of this initial hidden layer is
obtained by passing it through the transformation layer:

hu
1 = σ

 ∑
v∈N(u)

Wh⃗v


where σ is a non-linear activation function. This transformation produces a

new set of node features:

h1 =
(
h⃗1
1, h⃗

1
2, h⃗

1
3, ..., h⃗

1
N

)
, h⃗1

u ∈ RF1

where F1 can be greater or smaller than F . To determine the attention coeffi-
cient, which quantifies how much each neighboring node contributes to the current
node, we use a self-attention mechanism. For nodes u and v, where u is the current
node and v is a neighboring node, the attention coefficient is defined as:

euv = a
(
Wh⃗u,W h⃗v

)
Here, a is a shared attention mechanism function, W is a weight matrix W ∈

RF1×F , and euv indicates the relationship strength between nodes u and v. To
normalize the attention coefficients, we use the softmax function:

αuv = softmaxv(euv) =
euv∑

k∈N(u) exp(euk)

This can be further elaborated as:

αuv =
exp

(
LeakyReLU

(
aT

[
Wh⃗u∥Wh⃗v

]))
∑

k∈N(u) exp
(
LeakyReLU

(
aT

[
Wh⃗u∥Wh⃗k

]))
where αuv is the attention coefficient, LeakyReLU is the Leaky ReLU activation

function, ∥ denotes concatenation, and a is a learnable parameter. Using the
attention coefficients, the final node embedding for node u is updated as follows:

h⃗1
u = σ

 ∑
v∈N(u)

αuvWh⃗1
v


In summary, Graph Attention Networks (GATs) enhance node embeddings by

assigning different importance weights to neighboring nodes through attention
mechanisms. This leads to more informative and effective representations for
downstream tasks.

6. Approximate Personalized Propagation Of Neural Predictions
(APPNP)

APPNP leverages personalized propagation and PageRank on graph-structured
data to enhance node embeddings and improve predictions. We start with initial-
izing the node features hv

0 = xv, where xv denotes the initial feature vector of node
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v. Initially, we compute PageRank through a random walk on the graph, where
nodes closer to the target node have higher probabilities:

πpr = Arwπpr

Here, Arw = AD−1 and D−1 is the inverse of the degree matrix. Introducing
a teleport vector ix, personalized PageRank refines node importance based on
proximity to ix:

πppr(ix) = (1− α)Ãπppr(ix) + αix

Resulting in:

πppr = α(In − (1− α)Ã)−1

where Ã = A + I and I is the identity matrix. Nodes are initially predicted
using a neural network fθ with parameters θ, yielding predictions H:

Hi,: = fθ(Xi,:)

APPNP uses iterative message passing steps to refine predictions across the
graph:

Z(0) = H

Z(k) = (1− α)ÃZ(k−1) + αH

where Ã includes the self-loops, ensuring propagation consistency without con-
structing an n × n matrix directly. The final node predictions Z(K) are obtained
by applying a softmax function to the last iteration of message passing:

Z(K) = softmax
(
(1− α)ÃKZ(K−1) + αH

)
This approach efficiently integrates node features and graph structure, enhanc-

ing prediction accuracy while maintaining computational efficiency.

7. Discussion

In summary, Graph Convolutional Networks (GCNs) leverage convolutional
operations on graph structures, allowing nodes to aggregate and propagate in-
formation through their neighborhoods, akin to traditional convolutional neural
networks in image processing. They excel in tasks where local neighborhood in-
formation is crucial, such as node classification and link prediction. GraphSAGE
extends the idea of neighborhood aggregation by sampling and aggregating infor-
mation from a node’s neighbors, enabling scalability to large graphs while main-
taining representation quality. This method is particularly useful in scenarios
where full graph information is impractical due to size constraints. Graph Atten-
tion Networks (GATs) introduce attention mechanisms to GNNs, allowing nodes
to selectively attend to different neighbors based on learned importance weights.
This adaptability enhances the model’s ability to capture varying degrees of influ-
ence from neighboring nodes, improving performance in tasks requiring nuanced
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relational reasoning. The Approximate Personalized Propagation of Neural Predic-
tions (APPNP) integrates personalized PageRank with neural network predictions,
facilitating effective information propagation across the graph. By iteratively re-
fining node predictions through personalized propagation steps, APPNP achieves
state-of-the-art results in tasks demanding personalized influence modeling and
graph-wide prediction aggregation.

8. Conclusion

In this article, we explored four prominent types of Message Passing Graph
Neural Networks (GNNs): Graph Convolutional Networks (GCNs), GraphSAGE,
Graph Attention Networks (GATs), and the Approximate Personalized Propaga-
tion of Neural Predictions (APPNP). Each of these models represents a significant
advancement in the field of graph-based learning, offering unique approaches to
effectively capture and utilize relational information in graph-structured data. In
conclusion, Message Passing Graph Neural Networks represent a powerful para-
digm for learning from graph-structured data, offering versatile tools to tackle a
wide range of tasks including node classification, link prediction, and graph-level
tasks. As research continues to evolve, further advancements in GNN architec-
tures promise to unlock new capabilities in understanding and analyzing complex
relational data.
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