
UNIVERSAL AND ADAPTIVE THRESHOLDING METHODS

FOR MULTILEVEL DENOISING OF ECG SIGNALS USING

ORTHOGONAL WAVELETS

DIVYA SHENOY PURUSHOTHAMA#, PAWAN GANESH NAYAK#, TOM DEVASIA,

AND ANOOP KISHORE*

Abstract. In signal processing, discrete wavelets transform (DWT) is used

to compress and denoise n-Dimensional signals. DWT can also be used to
remove noises such as instrumentation noises, power line interference, noise

from muscle artefacts etc., from the captured biological signals like electro-

cardiogram (ECG). Performing wavelet transforms on the ECG signals is like
passing the signal through bandpass filters. In DWT, several wavelets have

been generated for this purpose. In this work, an arrhythmic ECG signal

noised with a sinewave was denoised using the orthogonal wavelets like Haar,
Daubechies, Coiflets and Symlets, with adaptive and universal thresholding

algorithms. The diagnostic validity of the mathematical transformation of

the denoised signal is assessed computationally as well as clinically.

1. Introduction

Discrete wavelet transforms are widely used in denoising biological signals. We
had previously assessed the ECG denoising capabilities of Fast Fourier Trans-
form (FFT), and orthogonal and biorthogonal discrete wavelet transforms (DWT),
where an ECG signal was mixed with a sinewave noise and attempted to denoise
them using FFT and DWT [1, 2]. While denoising the signals using orthogonal and
biorthogonal wavelets (sym4, coif5 and bior6.8), upon comparison of the fidelity of
the denoised signals with that of the original signals and their subsequent clinical
assessment by a clinician blinded to the experiments, it was observed that the clin-
ically useful signals are not necessarily the ones the highest peak signal-to-noise
ratio (PSNR). In the current work, we perform an extensive assessment of the de-
noising biological signals using certain orthogonal wavelets like Haar, Daubechies
(db), Coiflets (coif) and Symlets (sym).
In an orthogonal wavelet, the inner product of different wavelet functions is equal
to zero. i.e., in an orthogonal wavelet, the scaling function is orthogonal to wavelet
function. If a wavelet is orthogonal, the wavelet transform preserves energy. There
are different types of orthogonal wavelets, such as Haar, Daubechies, Coiflets and
Symlets etc. The Haar is the simplest discrete wavelet which is extremely localized
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in time. They are defined by [3].
For 2p + n ≥ 1,

ψ(2p + n, t) =


√
2p for n/2p ≤ t ≤

(
n+ 1

2

)/
2p

−
√
2p for

(
n+ 1

2

)/
2p ≤ (n+ 1)

/
2p

0 otherwise

for p = 0, 1, 2, 3, ..., and n = 0, 1, 2, 4, ..., 2p − 1 and 0 ≤ t ≤ 1.
The Daubechies wavelets [4] are orthogonal as well as biorthogonal and charac-
terized by maximal number of vanishing points for some given support [5]. These
wavelets are not defined in terms of the resulting scaling and wavelet functions;
in fact, they are not possible to be written down in a closed form. The simplest
possible wavelet, Haar, is in fact the db1 wavelet.
Coiflets are a family of wavelets that are designed to have both compact support
and a high number of vanishing points. The Coiflets are orthogonal, biorthogonal
and near symmetric.
An orthonormal wavelet ψ with compact support is called a coiflet of order N, if
the following conditions are satisfied [6].
1.
∫∞
−∞ xnψ(x)dx = 0 for n = 0, 1, 2, ..., N − 1.

2.
∫∞
−∞ xnϕ(x)dx = δn for n = 0, 1, 2, ..., N − 1. where ϕ is the scaling function

corresponding to ψ and δn is the Kronecker delta, i.e., δ0 = 1 and δn = 0 for
n ̸= 0.
Symlets are derived from Daubechies, but have been modified to be symmetric,
with good regularity and compact support. The number of vanishing moments in
Symlets can be adjusted, which enhances their ability to capture detailed infor-
mation about the signal or the image being analysed. A visual representation of
the four wavelets is given in Figure 1.

Figure 1. Visualization of the wavelet functions of the orthog-
onal wavelets. A- Haar (or db1) wavelet, at level 5; B, C, D-
Daubechies, Coiflet and Symlet respectively, each with 7 vanish-
ing moments, at level 5.
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For discrete transformation using wavelets, several wavelet coefficient threshold-
ing approaches are used. In this research work, we have performed wavelet trans-
form analysis of a noised ECG signal using the VisuShrink a single and “universal
threshold” applied to all detail coefficients of the wavelets, and the BayesShrink,
which is an adaptive thresholding method that computes discrete thresholds for
each wavelet sub-band.
The VisuShrink technique consists of applying the soft thresholding operator using
a universal thresholding proposed by Donoho [7] and this threshold is given by the
equation

Tvisu = σn
√
2logL

where σ2
n is the noise variance of Adaptive White Gaussian Noise (AWGN) and

’L’ represents the total number of samples in the 1-D signal. This method gives
a highly smoothed reconstruction of a noisy signal, but compromises on many of
the important features of the signal, since the threshold tends to be high for large
values of ’L’ which may eliminate the signal coefficient along with noise.
The adaptive thresholding method, BayesShrink, has been discussed by Chang et
al. [8] where the threshold is derived using the Bayesian method. BayesShrink
method is sub band-dependent which means that the thresholding is done at each
sub band in the wavelet decomposition. In this method, it is assumed that the
wavelet coefficients are in the generalized Gaussian distribution, and the appro-
priate threshold formula can be obtained based on Bayesian estimation criteria,
which is expressed as

σB =
λ2noise
λsignal

=
λ2noise√

max(λ2G − λ2noise, 0)

where λ2G = 1
PS

∑PS

x,y=1 V
2
xy and PS is the number of wavelet coefficients Vxy on

the sub band under consideration [9].

λnoise =
median(|Vxy|)

0.6745
, Vxy ∈ subband HH

where Vxy is HH wavelet coefficients which forms the finest decomposition levels.
In this paper, we have performed a detailed evaluation of the DWT-based de-
noising of a noised ECG signal to evaluate the validity and clinical usefulness of
orthogonal wavelets like Haar, Daubechies (db), Coiflets (coif) and Symlets (sym),
with adaptive and universal thresholding algorithms.

2. Methods

An ECG signal from the Massachusetts Institute of Technology and Boston’s
Beth Israel Hospital (MIT-BIH) Arrhythmia Database [10] available on the Phys-
ioNet [11] was used for the study. The database contains two-channel ambulatory
recordings of ECG (30 Hz sampling rate) of subjects. From the database, the raw
signal from the record number 100 was selected for this study, and the signal from
the modified limb II (MLII) was used for denoising and clinical interpretations.
All the analyses were performed using Python language (3.12 stable release), on
a locally installed Jupyter Notebook (version 7.0.6) platform. The Python library
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Waveform Database Software Package (WFDB version 4.1.0) [12], was used to
access the record- 100 from MIT-BIH database. The Python libraries used for
processing the ECG signals and their visualization include- NumPy (v.1.26.3, for
numerical computing) [13], matplotlib (v.3.8.4, for visualization), SciPy (v.1.13.1,
for scientific computing) and its subpackages -io, wavfile and stats [14], Librosa
(v. 0.10.2.post1, for processing of audio files) [15], os, pandas (v.2.2.2, for data
analysis) [16] and scikit-image [v. 0.23.2, for image and signal processing] [17].
The orthogonal wavelet based denoising of signals were performed using skim-
age.restoration module which is an edge-preserving, denoising filter that can be
applied to 1-D signals as well. We performed multilevel decomposition of the noised
ECG signal using Haar (1-wavelet up to 15-levels), Daubechies (1-38 wavelets each
up to 15 levels), Coiflets (1-17 wavelets each up to 15 levels) and Symlets (2-
20 wavelets each up to 15 levels). All the decompositions were performed using
both the universal (VisuShrink) and the adaptive (BayesShrink) thresholding al-
gorithms for denoising the signals.
The processing of ECG signal and its denoising using orthogonal wavelets was
performed in the following manner.

2.1. Adding 40 Hz noise to the ECG signal-. The ECG signal (record 100,
with 65000 data points and sampling rate of 360/s) obtained from the MIT-BIH
arrhythmia database was an already preprocessed and clean signal. Therefore, to
add noise to the signal, a sinewave of 40 Hz was added to the signal to obtain the
noised ECG signal. Figure 2 Shows the clean and noised signals.

2.2. Multilevel 1-D discrete wavelet transforms of the noised signal. The
denoise wavelet() function of skimage.restoration module was used for multilevel
decomposition of the noised ECG signal. The denoise function takes parameters
such as the wavelet, wavelet level, thresholding method, noise standard deviation
etc. The noised signal was denoised using the adaptive thresholding method-
BayesShrink applied to all the wavelets, up to 15 levels. Similarly, the universal
thresholding (VisuShrink) based denoising was performed using all the wavelets
and the levels.

2.3. Assessment of the fidelity of denoised ECG signals with the origi-
nal ECG signal and their clinical evaluation. The peak signal to noise ratio
(PSNR) between the original ECG (clean signal) and the denoised signal of each
wavelet at each level was calculated using the peak signal noise ratio() function of
the skimage.metrics module. The fidelity of the denoised signal with the highest
PSNR value was then evaluated by a cardiologist. The signals were visually eval-
uated and compared with the original ECG to check similarities between the wave
components (P-, Q-, R-, S- and T-subwaves), their characteristics, precision etc.
The denoised signal with the highest resemblance to the original ECG signal was
identified by the observer. To avoid any bias, the evaluating clinician was blinded
to the noising and denoising processes.
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Figure 2. (A) Original signal (ECG signal from record no. 100)
accessed from MIT-BIH arrhythmia Database. (Sampling rate:
360/s, first 1000 data points); (B) sinewave of 40 Hz (noise, sam-
pling rate: 360/s, sampling points: 1000); (C) Noised signal (sam-
pling points: 1000).

3. Results

The raw ECG (record No 100) signal obtained from the MIT-BIH arrhythmia
database is shown in Figure 2A. In the signal, the wave components (P, Q, R, S,
T) and the pathological characteristics of arrhythmia can be observed. Then, a
40 Hz sinewave noise was added to the ECG signal to create the noised signal,
which was then denoised using DWT (Haar, db, coif and sym) using universal and
adaptive thresholding algorithms.

3.1. Multilevel denoising using the adaptive thresholding method. Mul-
tilevel denoising of the noised signal was performed using BayesShrink algorithm
using the wavelets- Haar, db (1-38), Coif (1-17) and Sym (2-20), each up to 15 lev-
els, employing denoise wavelet() function. During denoising, the boundary effects
become predominant while nearing level 15. Therefore, denoising beyond level 15
was not attempted. Table 1 shows the obtained PSNR values of denoised signals
when compared to the original signal. Only the data of the 10 wavelets from each
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family, up to 7 levels are shown in the table due to space constraints.
While denoising with each wavelet, the signal with the highest PSNR was obtained
within 10 levels of denoising using BayesShrink. However, in most cases, the de-
noised signals with the highest PSNR values were found to be not suitable for
diagnostic purposes since the denoising process causes changes in the wave com-
ponent characteristics. Figure 2 shows representative denoised signals, with the
highest PSNR value from each wavelet, and their distortions in wave components
when compared to the original ECG signal. Also, subjecting to discrete wavelet
transformation introduced distortions in certain components of the ECG. For e.g.,
in all the denoised signals, artifacts were observed at the end of QRS complex.

Table 1. PSNR values of the denoised signal with respect to
the original ECG signal. ∗Indicates the denoising level at which
the highest PSNR value is obtained. # indicates that the corre-
sponding denoised signal is not clinically acceptable for diagnostic
or prognostic purposes when examined by the clinician.
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Figure 3. Orthogonal wavelet based denoised signals using
adaptive thresholding method. Representative samples from each
orthogonal wavelet family with the highest PSNR are shown. The
initial 1500 samples of the signals (sampling rate 360/s) are plot-
ted against amplitude. A) The original signal from record 100
of MIT-BIH arrhythmia database; B,C,D - denoised signal using
db5, coif6 and sym10 respectively (each one at level-3). Arrow
indicates the resulting artefacts.

Multilevel denoising using the universal thresholding method. In this
process, the VisuShrink universal thresholding algorithm was applied in the denoise
wavelet() function to denoise the signals at each level of the orthogonal wavelets.
Since boundary effects become predominant approaching level 15, the denoising
was restricted at level 15. Table 2 shows the PSNR values of denoised signals when
compared to the original signal. Similar to BayesShrink, the highest PSNR value
for each level was obtained within the first 10 levels with VisuShrink. Compared
to the original ECG wave, considerable distortions still existed in the denoised
signal, as seen in Figure 4. The signals corresponding to the highest PSNR values
had high levels of noise and were not of diagnostic quality. On the other hand,
certain signals with lower PSNR values showed more similarity with the original
signal when assessed visually as indicated in Table 2.
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Table 2. PSNR values of the denoised ECG signal with respect
to the original ECG signal. ∗Indicates the denoising level at which
the highest PSNR value is obtained. # indicates that the corre-
sponding denoised signal is not clinically acceptable for diagnostic
or prognostic purposes when examined by the clinician. $ indi-
cates signal with more resemblance to the original signal than that
with the highest PSNR.
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Figure 4. Orthogonal wavelet based denoised signals using the
universal thresholding method (VisuShrink). Representative sam-
ples from each orthogonal wavelet family with the highest PSNR
are shown. The initial 1500 samples of the signals (sampling rate
360/s) are plotted against amplitude. A) The original signal from
record 100 of MIT-BIH arrhythmia database; B,C,D - denoised
signal using db5 at level-2, coif4 at level-1 and sym2 at level-1
respectively.

4. Discussion and conclusion

There are several mathematical functions to compress and denoise signals.
Among these, the Discrete Wavelet Transforms can be used to efficiently denoise
N-dimensional signals. In this work, we performed denoising of an ECG signal
(from record No. 100) from the MIT-BIH arrhythmia database that was noised
using 40 Hz sinewave. All the orthogonal wavelets supported by the PyWavelet
library for Python such as Haar, db, coif and sym were used to denoise the sig-
nal. Transformations of up to 15 levels were performed for each wavelet and the
denoised signals were compared with the original signal (record 100) computa-
tionally by calculating peak signal to noise ratio (PSNR), and evaluated visually
by a cardiologist to determine the fidelity, precision and diagnostic value of the
denoised signal.
General observations include decrease in PSNR values of the denoised signals with
increasing levels of transformations. Overall, with BayesShrink method, the most
common level at which highest PSNR values were obtained was the level-3, whereas
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with VisuShrink, the maximum number of highest PSNRs were observed at level-
1. Computationally denoising with adaptive thresholding algorithm yielded higher
PSNRs than the universal thresholding method. Additionally, in universal thresh-
olding method, with symlet transformation certain denoised signals with lower
PSNRs showed better similarity with the original signal than their higher PSNR
counterparts.
None of the signals corresponding to the highest PSNR values were suitable for
diagnostic purposes. The main reasons for this include- presence of excessive noise
that prevented identification of the characteristic features of cardiac rhythm, alter-
nations in the wave components of the denoised signals, wave distortions, presence
of artefacts in the signals etc., that interfered with diagnostic values of these sig-
nals. In conclusion, the signals denoised using adaptive as well as universal thresh-
old methods in the orthogonal wavelets db, coif, and sym were found to be not
helpful for noised ECG signals. Biorthogonal wavelets may be more appropriate
for the noised biological signals to provide better precision and fidelity.
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