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Abstract. This research paper focuses on the computation and analysis of

molecular descriptors or topological indices for a generalised Kneser-type bi-
partite graph called bipartite Kneser B type-k graph denoted by HB(n, k).

Topological indices are formulae that are obtained from graph connectivity

patterns and are used to summarise and compress the data that is included in
those patterns. In this study, we systematically compute several well-known

degree based topological indices of HB(n, k). We employ combinatorial meth-

ods and graph-theoretic techniques to derive explicit formulas and recursive
relations for these indices. These results provide insights into the structural

properties of this graph.

1. Introduction

While graph theory produces conclusions with applications in many scientific
domains, discrete mathematics provides an engaging environment for understand-
ing proving procedures. Graphs are used in a specialist branch of mathematics
called ”chemical graph theory” to represent and analyse the properties and struc-
ture of chemical substances. The mathematical features of networks, referred to
as topological indices or molecular descriptors, are crucial to chemistry. They
provide a unique way to connect chemical compound molecular graphs to their as-
sociated structural attributes. A molecular graph is a particular type of connected,
undirected graph that can be associated with a chemical substance’s structural for-
mula. The nodes in this graph stand in for the individual atoms that make up
the molecule, and the edges represent the chemical bonds that hold the atoms
together. Topological indices are extensively used in QSPR and QSAR studies.
Topological indices are crucial for understanding the complex structural laws that
govern the properties and behaviours of molecules and networks. Researchers may
classify, compare, and predict a wide range of qualities and occurrences with the
use of these numerical descriptors, which provide helpful quantitative informa-
tion about the underlying topology. Topological indices are extensively used in
a wide range of domains, such as network analysis, chemistry, materials science,
and computational biology. Most of the topological indices are of different types,
such as degree-based topological indices, distance-based topological indices, and
spectrum-based topological indices.
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Kneser bipartite graphs are significant in the domains of combinatorics and
graph theory because they provide deep insights and allow for complex applications
in coding theory, optimisation, and algorithm design. They are useful tools for
theoretical research and practical issue resolution due to their rich structures and
attributes. The connection between classical Kneser graphs and other bipartite
graph theories is established through the study of Kneser bipartite graphs.

The vertices of the bipartite Kneser graph and the Kneser graph were introduced
as non-empty subsets of a n-element set. When the respective sets in the Kneser
graph K(n, k) are disjoint, then two vertices in the graph are adjacent. Different
types of bipartite Kneser graphs were built and their algebraic structures were
analysed [1], [16]. These graphs are important because they enable the application
of graph theory to a large class of combinatorial problems involving sets.

Let Bn = {1, 2, · · · , n} where n ∈ Z and n > 1. For any two integers k ≥ 1 and
n ≥ 2k + 1, the vertex set of the bipartite Kneser graph H(n, k), [16], constitutes
the k-element subsets and (n−k) element subsets of Bn. Two vertices are adjacent
if and only if one of them is a subset of the other. Sreekumar K. G. et al., [19],
introduced a modified version of the bipartite Kneser graph, HT (n, 1). Here, for a
fixed integer n > 1, let An = {1, 2, 3, . . . , n}. Let φ(An) be the set of all non-empty
subsets of An. Let V1 be the set of 1-element subsets of An, and V2 = ϕ(An)−V1.
Let X ∈ V1 and Y ∈ V2. The adjacency of vertices in the bipartite graph is given
by: X ∼ Y if and only if X ⊂ Y . This graph is called a bipartite Kneser type-1
graph, [19], and is denoted by HT (n, 1). Sreekumar K. G. et al., [20], introduced
a bipartite Kneser B type-k graph G = HB(n, k) which are more general bipartite
graphs.

In Section 4, some degree-based topological indices of G = HB(n, k) such as
the Narumi-Katayama index, the first Zagreb index, the forgotten index or F-
index, the second Zagreb index, the second Hyper-Zagreb index, the Randic index,
the reciprocal Randic index, the atom-bond connectivity index, the geometric-
arithmetic index, the harmonic index, the Albertson index, and the sigma index
are determined.

2. Fundamentals of HB(n, k)

Definition 2.1. Let γn = {±x1,±x2,±x3, · · · ,±xn−1, xn} where n > 1 is fixed,
xi ∈ R+, i = 1, 2, 3, · · · , n, and x1 < x2 < x3 < · · · < xn. Let ϕ(γn) be the set
of all non-empty subsets S = {u1, u2, · · · , ut} of γn such that |u1| < |u2| < · · · <
|ut−1| < ut where ut ∈ R+. Let γ+

n = {x1, x2, x3, · · · , xn−1, xn}. For a fixed k, let
V1 be the set of k-element subsets of γ+

n , 1 ≤ k < n. V2 = ϕ(γn) − V1. For any
A ∈ V2, let A

† = {|x| : x ∈ A}. A bipartite graph with parts V1 and V2 and having
adjacency as X ∈ V1 is adjacent to Y ∈ V2 if and only if X ⊂ Y † or Y † ⊂ X.
A graph of this type is called the bipartite Kneser B type-k graph, [20], and is
denoted by HB(n, k).

Definition 2.2. An r-vertex in HB(n, k) is an element in ϕ(γn) = V1 ∪ V2

containing r elements, where 1 ≤ r ≤ n. Members of ϕ(γn) are called r-vertices.

Example 2.3. HB(n, k) for n = 3, k = 2 is illustrated in figure 1.
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The 2-vertex {1, 3} ∈ V1 is adjacent to the 1-vertex {3} because {3} ⊂ {1, 3}† =
{|1|, |3|} = {1, 3}. Simiarly {1, 3} is adjacent to the 1-vertex {1}. Additionally,
{1, 3} is adjacent to {−1, 3} as {1, 3} ⊂ {−1, 3}† = {| − 1|, |3|} = {1, 3}. The
adjacency relationships shown in Figure 1 can be illustrated by similar arguments.

Figure 1. HB(3, 2)

Example 2.4. As the size of HB(4, 3) is large , we give its bipartition here. By
the definition of HB(n, k), the vertex A ∈ V1 is adjacent to the vertex B ∈ V2 if
and only if A ⊂ B† or B† ⊂ A.

γ4 = {±1, ±2, ±3, 4},
V1 =

{
{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}

}
,
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V2 =
{
{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4},
{−1, 2}, {−1, 3}, {−1, 4}, {−2, 3}, {−2, 4}, {−3, 4},
{−1, 2, 3}, {1,−2, 3}, {−1,−2, 3}, {−1, 2, 4}, {1,−2, 4}, {−1,−2, 4},
{−2, 3, 4}, {2,−3, 4}, {−2,−3, 4}, , {−1, 3, 4}, {1,−3, 4}, {−1,−3, 4},
{1, 2, 3, 4}, {−1, 2, 3, 4}, {1,−2, 3, 4}, {1, 2,−3, 4}, {−1,−2, 3, 4},
{1,−2,−3, 4}, {−1, 2,−3, 4}, {−1,−2,−3, 4}

}
.

While V1 contains four 3-vertices, V2 contains four 1-vertices, twelve 2-vertices,
twelve 3-vertices, and eight 4-vertices.

3. Preliminary results

The following results proved in [14] are used in the computation of topological
indices.

Result 1. The order of G = HB(n, k), |V (G)| = 3n − 1

2
.

Result 2. The size of G = HB(n, k), |E(G)| =
(
n
k

)(3k − 3

2
+ 2k−1(3n−k − 1)

)
.

Result 3. The degree of a vertex in G = HB(n, k) and the number of vertices hav-
ing a specific degree are determined. The degree sequence is obtained by arranging

the sequence
{
dV2

(1)NV2
(1), dV2

(2)NV2
(2) . . . , dV2

(k − 1)NV2
(k−1), dV1

(k)NV1
(k),

dV2(k)
NV2

(k), dV2(k + 1)NV2
(k+1), . . . , dV2(n)

NV2
(n)
}

of degrees with corresponding

multiplicities as a monotonic nonincreasing sequence.

Here dV2
(r) where r = 1, 2, 3, . . . , k − 1, k + 1, . . . n denotes the degrees of r-

vertices in V2 and dV1(k) denotes the degree of any k-vertex in V1 . Degrees of ver-

tices are: dV2(r) =
(
n−r
k−r

)
for 1 ≤ r ≤ k−1, dV1(k) =

(
3k − 3

2
+ 2k−1(3n−k − 1)

)
,

dV2
(k) = 1, and dV2

(r) =
(
r
k

)
for k + 1 ≤ r ≤ n. The number of r-vertices

in V2, where r = 1, 2, 3, . . . , k − 1, k + 1, . . . n, is NV2
(r) = 2r−1

(
n
r

)
. The num-

ber of k-vertices in V1 is NV1
(k) =

(
n
k

)
, and the number of k-vertices in V2 is

NV2(k) = (2k−1 − 1)
(
n
k

)
.

Result 4. HB(n, k) has the maximum vertex degree ∆ = dV1(k) and the minimum
vertex degree δ = dV2(k) = 1.

Example 3.1. The degree sequence for HB(4, 3) given in Example 2.4 is obtained
by arranging the sequence,{

dV2
(1)NV2

(1), dV2
(2)NV2

(2), dV1
(3)NV1

(3), dV2
(3)NV2

(3), dV2
(4)NV2

(4)
}
=

{34, 212, 204, 112, 48} of degrees with corresponding multiplicities as a mono-

tonic, non-increasing sequence. Thus, the degree sequence is
{
204, 48, 34, 212, 112

}
.
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4. Some degree-based topological indices of HB(n, k)

Numerous vertex-degree-based graph invariants—also known as ”topological in-
dices”—have been presented and thoroughly examined in the literature on math-
ematics and chemistry, [18, 21]. Their general formula is :

TI = TI(G) =
∑

eij∈E(G)

F (deg(vi), deg(vj)).

Here F (x, y) is some function with the property F (x, y) = F (y, x), [10].

For the simple graph G = HB(n, k) with vertex set V (G) and edge set E(G), we
compute the following well-known degree-based topological indices: Here, deg(vi)
denotes the degree of vertex vi, and eij denotes the edge joining vertices vi and
vj .

Narumi-Katayama index[8], NK(G) =
n∏

i=1

deg(vi).

The first Zagreb index[9], M1(G) =
∑

vi∈V (G)

deg(vi)
2.

The forgotten index, or F-index [2, 13, 11], F(G) =
∑

vi∈V (G)

deg(vi)
3.

The second Zagreb index[7], M2(G) =
∑

eij∈E(G)

deg(vi)deg(vj).

The second Hyper-Zagreb index[4], M2(G) =
∑

eij∈E(G)

(deg(vi)deg(vj))
2.

The Randic index[17], R(G) =
∑

eij∈E(G)

1√
deg(vi)deg(vj)

.

The reciprocal Randic index[15], RR(G) =
∑

eij∈E(G)

√
deg(vi)deg(vj).

Atom-bond-connectivity index[5], ABC(G) =
∑

vivj∈E(G)

√
deg(vi)+deg(vj)−2

deg(vi)deg(v)
.

The geometric-arithmetic index[22], GA(G) =
∑

vivj∈E(G)

√
deg(vi)deg(vj)

1
2 [deg(vi)+deg(vj)]

.

The harmonic index[6], H(G) =
∑

vivj∈E(G)

2
deg(vi)+deg(vj)

.

The Albertson index[3], Alb(G) =
∑

vivj∈E(G)

|deg(vi)− deg(vj)|.

The sigma index, or irregularity index[12],

σ(G) =
∑

vivj∈E(G)

(deg(vi)− deg(vj))
2
.

In chemical graph theory, the Narumi-Katayama index is used to model physico-
chemical, pharmacologic, toxicologic and biological properties of chemical com-
pounds.

Theorem 4.1. For G = HB(n, k) with vertex set V (G), the Narumi-Katayama

index is NK(G) = (dV1(k))
(nk)(dV2(1))

NV2
(1)(dV2(2))

NV2
(2) · · · dV2(n)

NV2
(n).
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Proof. Let V (HB(n, k)) = {v1, v2, . . . , v (3n−1)
2

}. The degrees of vertices with cor-

responding multiplicities are given in Result 3.

NK(G) =

3n−1
2∏

i=1

deg(vi)

= (dV1
(k))(

n
k)(dV2

(1))NV2
(1)(dV2

(2))NV2
(2) · · · dV2

(n)NV2
(n). □

The First Zagreb index has been used to predict the π-electronic energy of
benzenoid hydrocarbons. It has been shown to be crucial in real-world situations
including corporate networking and road traffic management.

Theorem 4.2. For G = HB(n, k)) with vertex set V (G), the first Zagreb index is

M1(G) =

k−1∑
i=1

2i−1

(
n

i

)(
n− i

k − i

)2

+

(
n

k

)
(2k−1−1+dV1(k)

2)+

n∑
i=k+1

2i−1

(
n

i

)(
i

k

)2

.

Proof. Let V (HB(n, k)) = {v1, v2, . . . , v (3n−1)
2

}. The degrees of vertices with cor-

responding multiplicities are given in Result 3. First Zagreb index is:

M1(G) =
∑

vi∈V (G)

deg(vi)
2

=deg(v1)
2 + deg(v2)

2 + · · ·+ deg

(
v (3n−1)

2

)2

=NV2
(1)dV2

(1)2 +NV2
(2)dV2

(2)2 + · · ·+NV2
(k − 1)dV2

(k − 1)2+

NV1(k)dV1(k)
2 +NV2(k)dV2(k)

2 +NV2(k + 1)dV2(k + 1)2 + · · ·+
NV2

(n)dV2
(n)2

=20
(
n

1

)(
n− 1

k − 1

)2

+ 21
(
n

2

)(
n− 2

k − 2

)2

+ · · ·+

2k−2

(
n

k − 1

)(
n− (k − 1)

k − (k − 1)

)2

+ (2k−1 − 1)

(
n

k

)
12 +

(
n

k

)
dV1

(k)2+

2k
(

n

k + 1

)(
k + 1

k

)2

+ · · ·+ 2n−1

(
n

n

)(
n

k

)2

=

k−1∑
i=1

2i−1

(
n

i

)(
n− i

k − i

)2

+

(
n

k

)
(2k−1 − 1+

dV1
(k)2) +

n∑
i=k+1

2i−1

(
n

i

)(
i

k

)2

. □
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The forgotten index provides insight into the branching of the carbon-atom
skeleton within the molecular structure. In molecular graph theory, the forgot-
ten index plays a fundamental role in analyzing quantitative structure–activity or
property relationships.

Theorem 4.3. For G = HB(n, k)) with vertex set V (G), the forgotten index or
F-index is

F(G) =

k−1∑
i=1

2i−1

(
n

i

)(
n− i

k − i

)3

+

(
n

k

)
(2k−1 − 1+ dV1

(k)3) +

n∑
i=k+1

2i−1

(
n

i

)(
i

k

)3

.

Proof. The forgotten index or F-index is

F(G) =
∑

vi∈V (G)

deg(vi)
3

=deg(v1)
3 + deg(v2)

3 + · · ·+ deg

(
v (3n−1)

2

)3

=NV2
(1)dV2

(1)3 +NV2
(2)dV2

(2)3 + · · ·+NV2
(k − 1)dV2

(k − 1)3+

NV1(k)dV1(k)
3 +NV2(k)dV2(k)

3 +NV2(k + 1)dV2(k + 1)3 + · · ·
NV2

(n)dV2
(n)3

=20
(
n

1

)(
n− 1

k − 1

)3

+ 21
(
n

2

)(
n− 2

k − 2

)3

+ · · ·+ 2k−2

(
n

k − 1

)(
n− (k − 1)

k − (k − 1)

)3

+ (2k−1 − 1)

(
n

k

)
13 +

(
n

k

)
dV1

(k)3 + 2k
(

n

k + 1

)(
k + 1

k

)3

+ · · ·

+ 2n−1

(
n

n

)(
n

k

)3

=

k−1∑
i=1

2i−1

(
n

i

)(
n− i

k − i

)3

+

(
n

k

)
(2k−1 − 1 + dV1

(k)3)+

n∑
i=k+1

2i−1

(
n

i

)(
i

k

)3

. □

The second Zagreb index contributes to our knowledge of the stability and
electronic structure of molecular systems. It is used in modeling the boiling points
of benzenoid hydrocarbons.

Theorem 4.4. For G = HB(n, k)) with vertex set V (G), the second Zagreb index
is

M2(G) =

(
n

k

)
(dV1(k))

[ k−1∑
i=1

2i−1

(
k

i

)(
n− i

k − i

)
+ 2k−1 − 1+

n−k∑
i=1

2k−1+i

(
n− k

i

)(
k + i

k

)]
.

71



JAYAKUMAR C, MANILAL K, SREEKUMAR K G, AND ISMAIL NACI CANGUL

Proof. We know that the degree of any k-vertex u in V1 is deg(u) = dV1
(k). Also,

the degree of any r-vertex where 1 ≤ r ≤ n in V2 is dV2(r).

Let nV2
(r) be the number of r-vertices,1 ≤ r ≤ n adjacent to u ∈ V1.The values

of nV2
(r) as given in [14] are

nV2(r) =


2r−1

(
k
r

)
for 1 ≤ r ≤ k − 1

2k−1 − 1 for r = k

2r−1
(
n−k
r−k

)
for k + 1 ≤ r ≤ n.

It is also clear that dV1
(k) =

n∑
r=1

nV2
(r).

Let {u1, u2, · · ·udV1
(k)} be the neighbourhood set of u. This set contains nV2(r),

r-vertices of degree dV2
(r) for 1 ≤ r ≤ n.

∑
uui∈E(G)
1≤i≤dV1

(k)

deg(u)deg(ui) = dV1
(k)

n∑
r=1

nV2
(r)dV2

(r). (4.1)

dV1
(k)

n∑
r=1

nV2
(r)dV2

(r) =dV1
(k)
(
nV2

(1)dV2
(1) + nV2

(2)dV2
(2) + · · ·+

nV2(k − 1)dV2(k − 1)+)nV2(k)dV2(k)+

nV2(k + 1)dV2(k + 1) + · · ·nV2(n)dV2(n)
)

=dV1
(k)

(
20
(
k

1

)(
n− 1

k − 1

)
+ 21

(
k

2

)(
n− 2

k − 2

)
+ · · ·+

2k−2

(
k

k − 1

)(
n− (k − 1)

k − (k − 1)

)
+ (2k−1 − 1)+

2k
(
n− k

1

)(
k + 1

k

)
+ · · ·+ 2n−1

(
n− k

n− k

)(
n

k

))
.

As there are
(
n
k

)
, k-vertices in V1, the second Zagreb index is:

M2(G) =
∑

eij∈E(G)

deg(vi)deg(vj) =
(
n
k

)
dV1

(k)
n∑

r=1
nV2

(r)dV2
(r). Therefore,

M2(G) =

(
n

k

)
dV1(k)

[
k−1∑
i=1

2i−1

(
k

i

)(
n− i

k − i

)
+ 2k−1 − 1+

n−k∑
i=1

2k−1+i

(
n− k

i

)(
k + i

k

)]
. □

An extension of the Zagreb index that is used to forecast the physicochemical
characteristics of organic molecules is the hyper-Zagreb index.
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Theorem 4.5. For G = HB(n, k)) with vertex set V (G), the second hyper-Zagreb
index is

HM2(G) =

(
n

k

)
d2V1

(k)

[
k−1∑
i=1

2i−1

(
k

i

)(
n− i

k − i

)2

+ 2k−1 − 1+

n−k∑
i=1

2k−1+i

(
n− k

i

)(
k + i

k

)2
]
.

Proof. We choose u, nV2
(r), dV1

(k) and dV2
(r) for 1 ≤ r ≤ n as in Theorem 4.4.∑

uui∈E(G)
1≤i≤dV1

(k)

deg2(u)deg2(ui) = d2V1
(k)

n∑
r=1

nV2
(r)d2V2

(r) (4.2)

d2V1
(k)

n∑
r=1

nV2
(r)d2V2

(r) =d2V1
(k)
(
nV2

(1)d2V2
(1) + nV2

(2)d2V2
(2) + · · ·+

nV2(k − 1)d2V2
(k − 1) + nV2(k)d

2
V2
(k)+

nV2(k + 1)d2V2
(k + 1) + · · ·nV2(n)d

2
V2
(n)
)

=d2V1
(k)

(
20
(
k

1

)(
n− 1

k − 1

)2

+ 21
(
k

2

)(
n− 2

k − 2

)2

+ · · ·+

2k−2

(
k

k − 1

)(
n− (k − 1)

k − (k − 1)

)2

+ (2k−1 − 1)+

2k
(
n− k

1

)(
k + 1

k

)2

+ · · ·+ 2n−1

(
n− k

n− k

)(
n

k

)2
)
.

As there are
(
n
k

)
k vertices in V1, we have

HM2(G) =
∑

eij∈E(G)

(deg(vi)deg(vj))
2 =

(
n
k

)
d2V1

(k)
n∑

r=1
nV2

(r)d2V2
(r).

Therefore, the second hyper-Zagreb index is

HM2(G) =

(
n

k

)
d2V1

(k)

[
k−1∑
i=1

2i−1

(
k

i

)(
n− i

k − i

)2

+ 2k−1 − 1+

n−k∑
i=1

2k−1+i

(
n− k

i

)(
k + i

k

)2
]
. □

If each vertex in a graph has the same degree, the graph is said to be regular.
Regular graphs are instances or counterexamples in many applications of graph
theory, and regularity often makes calculations easier. If a graph has two or more
uneven vertex degrees, it is considered irregular. A number of writers have defined
irregularity and used various measurements for it. The most in-depth research has
been done on the sigma and Albertson indices. For HB(n, k), they are computed
using the next two theorems.
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Theorem 4.6. For G = HB(n, k) with vertex set V (G), the Albertson index
(which is also called irregularity index, third Zagreb index or Kekule index) is

Alb(G) =

(
n

k

)(
d2V1

(k)−
[ k−1∑

i=1

2i−1

(
k

i

)(
n− i

k − i

)
+ 2k−1 − 1+

n−k∑
i=1

2k−1+i

(
n− k

i

)(
k + i

k

)])
.

Proof. We choose u, nV2
(r), dV1

(k) and dV2
(r) for 1 ≤ r ≤ n as in theorem 4.4.

∑
uui∈E(G)
1≤i≤dV1

(k)

|deg(u)− deg(ui)| =
∑

uui∈E(G)
1≤i≤dV1

(k)

(dV1(k)− deg(ui))

= dV1
(k)× dV1

(k)−
∑

uui∈E(G)
1≤i≤dV1

(k)

deg(ui)

= d2V1
(k)−

n∑
r=1

nV2
(r)dv2(r)

= d2V1
(k)−

[
k−1∑
i=1

2i−1

(
k

i

)(
n− i

k − i

)
+ 2k−1 − 1+

n−k∑
i=1

2k−1+i

(
n− k

i

)(
k + i

k

)]
.

As there are
(
n
k

)
k vertices in V1, the Albertson index is:

Alb(G) =
∑

vivj∈E(G)

|deg(vi)− deg(vj)| =
(
n
k

) ∑
uui∈E(G)
1≤i≤dV1

(k)

|deg(u)− deg(ui)|. □

Theorem 4.7. For G = HB(n, k), the sigma index of G,

σ(G) =
(
n
k

)(
d3V1

(k) +
n∑

r=1
nV2

(r)d2v2(r)− 2dV1
(k)

n∑
r=1

nV2
(r)dv2(r)

)
.

Proof. We choose u, nV2(r), dV1(k) and dV2(r) for 1 ≤ r ≤ n as in Theorem 4.4.
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∑
uui∈E(G)
1≤i≤dV1

(k)

(deg(u)− deg(ui))
2 =

∑
uui∈E(G)
1≤i≤dV1

(k)

(d2V1
(k) + deg2(ui)− 2dV1

(k)deg(ui))

= d3V1
(k) +

∑
uui∈E(G)
1≤i≤dV1

(k)

deg2(ui)−

2dV1
(k)

∑
uui∈E(G)
1≤i≤dV1

(k)

deg(ui)

= d3V1
(k) +

n∑
r=1

nV2
(r)d2v2(r)−

2dV1
(k)

n∑
r=1

nV2
(r)dv2(r).

As there are
(
n
k

)
k vertices in V1, the sigma index is σ(G) =

(
n
k

)(
d3V1

(k) +
n∑

r=1
nV2

(r)d2v2(r)− 2dV1
(k)

n∑
r=1

nV2
(r)dv2

(r)
)
.

From Eqn. (4.1), we get
n∑

r=1
nV2(r)dv2(r) =

k−1∑
i=1

2i−1
(
k
i

)(
n−i
k−i

)
+ 2k−1 − 1 +

n−k∑
i=1

2k−1+i
(
n−k
i

)(
k+i
k

)
.

From Eqn. (4.2), we get
n∑

r=1
nV2(r)d

2
v2(r) =

k−1∑
i=1

2i−1
(
k
i

)(
n−i
k−i

)2
+ 2k−1 − 1 +

n−k∑
i=1

2k−1+i
(
n−k
i

)(
k+i
k

)2
. □

Theorem 4.8. For G = HB(n, k)) with vertex set V (G), the Randic index is

R(G) =

(
n
k

)√
dV1

(k)

k−1∑
i=1

2i−1
(
k
i

)√(
n−i
k−i

) + 2k−1 − 1 +

n−k∑
i=1

2k−1+i
(
n−k
i

)√(
k+i
k

)
 .
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Proof. We choose u, nV2
(r), dV1

(k) and dV2
(r) for 1 ≤ r ≤ n as in Theorem 4.4.∑

uui∈E(G)
1≤i≤dV1

(k)

1√
deg(u)deg(ui)

= 1√
dV1

(k)

∑
uui∈E(G)
1≤i≤dV1

(k)

1√
deg(ui)

= 1√
dV1

(k)

n∑
r=1

nV2
(r)√

dV2
(r)

1√
dV1

(k)

n∑
r=1

nV2
(r)√

dV2
(r)

=
1√

dV1
(k)

(
nV2

(1)√
dV2

(1)
+

nV2
(2)√

dV2
(2)

+ · · ·+ nV2
(k − 1)√

dV2
(k − 1)

+

nV2(k)√
dV2(k)

+
nV2(k + 1)√
dV2(k + 1)

+ · · ·+ nV2(n)√
dV2(n)

)

=
1√

dV1
(k)

(
20
(
k
1

)√(
n−1
k−1

) + 21
(
k
2

)√(
n−2
k−2

) + · · ·+
2k−2

(
k

k−1

)√(
n−(k−1)
k−(k−1)

)+
(2k−1 − 1) +

2k
(
n−k
1

)√(
k+1
k

) + · · ·+
2n−1

(
n−k
n−k

)√(
n
k

)
)

=
1√

dV1
(k)

k−1∑
i=1

2i−1
(
k
i

)√(
n−i
k−i

) + 2k−1 − 1 +

n−k∑
i=1

2k−1+i
(
n−k
i

)√(
k+i
k

)
 .

As there are
(
n
k

)
k-vertices in V1, the Randic index of G,

R(G) =
∑

eij∈E(G)

1√
deg(vi)deg(vj)

=
(nk)√
dV1

(k)

n∑
r=1

nV2
(r)√

dV2
(r)

.

Therefore,

R(G) =

(
n
k

)√
dV1

(k)

k−1∑
i=1

2i−1
(
k
i

)√(
n−i
k−i

) + 2k−1 − 1 +

n−k∑
i=1

2k−1+i
(
n−k
i

)√(
k+i
k

)
 . □

Theorem 4.9. For G = HB(n, k) with vertex set V (G), the reciprocal Randic
index is

RR(G) =

(
n

k

)√
dV1

(k)

[
k−1∑
i=1

2i−1

(
k

i

)√(
n− i

k − i

)
+ 2k−1 − 1+

n−k∑
i=1

2k−1+i

(
n− k

i

)√(
k + i

k

) ]
.

Proof. We choose u, nV2
(r), dV1

(k) and dV2
(r) for 1 ≤ r ≤ n as in Theorem 4.4.∑

uui∈E(G)
1≤i≤dV1

(k)

√
deg(u)deg(ui) =

√
dV1

(k)
∑

uui∈E(G)
1≤i≤dV1

(k)

√
deg(ui)

=
√

dV1
(k)

n∑
r=1

nV2
(r)
√
dV2

(r).
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.√
dV1(k)

n∑
r=1

nV2(r)
√

dV2(r) =
√
dV1(k)

(
nV2(1)

√
dV2(1) + nV2(2)

√
dV2 + · · ·

+ nV2(k − 1)
√
dV2(k − 1) + nV2(k)

√
dV2(k)+

nV2(k + 1)
√

dV2(k + 1) + · · ·+ nV2(n)
√
dV2(n)

)
=
√
dV1

(k)

(
20
(
k

1

)√(
n− 1

k − 1

)
+ 21

(
k

2

)√(
n− 2

k − 2

)
+

· · ·+ 2k−2

(
k

k − 1

)√(
n− (k − 1)

k − (k − 1)

)
+ (2k−1 − 1)+

2k
(
n− k

1

)√(
k + 1

k

)
+ · · ·+ 2n−1

(
n− k

n− k

)√(
n

k

))

=
√

dV1
(k)

[
k−1∑
i=1

2i−1

(
k

i

)√(
n− i

k − i

)
+ 2k−1 − 1+

n−k∑
i=1

2k−1+i

(
n− k

i

)√(
k + i

k

)]
.

As there are
(
n
k

)
k-vertices in V1, the reciprocal Randic index is

RR(G) =
∑

eij∈E(G)

√
deg(vi)deg(vj)

=

(
n

k

)√
dV1

(k)

n∑
r=1

nV2
(r)
√
dV2

(r).

Therefore,

RR(G) =

(
n

k

)√
dV1

(k)

[
k−1∑
i=1

2i−1

(
k

i

)√(
n− i

k − i

)
+ 2k−1 − 1+

n−k∑
i=1

2k−1+i

(
n− k

i

)√(
k + i

k

)]
. □

Theorem 4.10. The geometric-arithmetic index of G = HB(n, k) is GA(G) =

2
(
n
k

) n∑
r=1

nV2
(r)

√
dV1

(k)
√

dV2
(r)

dV1
(k)+dV2

(r) .

Proof. We choose u, nV2(r), dV1(k) and dV2(r) for 1 ≤ r ≤ n as in Theorem 4.4.

Hence
∑

uui∈E(G)
1≤i≤dV1

(k)

2
√

deg(u)deg(ui)

deg(u)+deg(ui)
=

n∑
r=1

nV2
(r)

2
√

dV1
(k)

√
dV2

(r)

dV1
(k)+dV2

(r) . As there are
(
n
k

)
,

k-vertices in V1,
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the geometric-arithmetic index is

GA(G) =
∑

vivj∈E(G)

√
deg(vi)deg(vj)

1
2 [deg(vi) + deg(vj)]

= 2

(
n

k

) n∑
r=1

nV2
(r)

√
dV1

(k)
√

dV2
(r)

dV1
(k) + dV2

(r)
. □

.

Theorem 4.11. The harmonic index of G = HB(n, k),

H(G) =
(
n
k

) n∑
r=1

nV2
(r) 2

dV1
(k)+dV2

(r) .

Proof. We choose u, nV2
(r), dV1

(k) and dV2
(r) for 1 ≤ r ≤ n as in Theorem 4.4.

Hence
∑

uui∈E(G)
1≤i≤dV1

(k)

2
deg(u)+deg(ui)

=
n∑

r=1
nV2(r)

2
dV1

(k)+dV2
(r) . As there are

(
n
k

)
, k-

vertices in V1, the harmonic index of G is H(G) =
(
n
k

) n∑
r=1

nV2
(r) 2

dV1
(k)+dV2

(r) . □

Theorem 4.12. Atom-bond-connectivity index of G = HB(n, k) is ABC(G) =
(nk)√
dV1

(k)

n∑
r=1

nV2
(r)

√
dV1

(k)+dV2
(r)−2√

dV2
(r)

.

Proof. We choose u, nV2
(r), dV1

(k) and dV2
(r) for 1 ≤ r ≤ n as in Theorem 4.4.

Then
∑

uui∈E(G)
1≤i≤dV1

(k)

√
deg(u)+deg(ui)−2√

deg(u)deg(ui)
= 1√

dV1
(k)

n∑
r=1

nV2
(r)

√
dV1

(k)+dV2
(r)−2√

dV2
(r)

. As there

are
(
n
k

)
k-vertices in V1, the ABC index of HB(n, k),

ABC(G) =
∑

vivj∈E(G)

√
deg(vi)+deg(vj)−2

deg(vi)deg(v)
=

(nk)√
dV1

(k)

n∑
r=1

nV2
(r)

√
dV1

(k)+dV2
(r)−2√

dV2
(r)

.

□
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