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NORM PRINCIPLES FOR GO(q) AND Spin(q)

PRIYABRATA MANDAL

ABSTRACT. The aim of this article is to discuss the proof that the norm prin-
ciple holds for the group of similitudes GO(q) and the spinor group Spin(q)
for a quadratic form ¢ defined over F'.

1. Introduction:

In this paper, we explore norm principles for connected reductive algebraic
groups defined over a field F', where char F' is different from 2. Consider an
abelian algebraic group T over the field F' which is linear and let K/F be a finite
field extension which is separable. The norm homomorphism N p, is defined as

by sending ¢ — [], ~(t), where v € % and F*°P denotes the separable
closure of F. If T' = Gy, then Ng/p is the usual field norm Ny, p: K* — F*.

Suppose G(F) is a connected algebraic group over F' which is linear, and T'(F)
is a commutative algebraic group which is also linear over F'. Let us consider an
algebraic group homomorphism ¢ : G(F) — T(F). For a separable field extension
K/F that is finite, let ¢x be the algebraic group homomorphism from G(K) to
T(K). Let us look into the following diagram:

G(K) —2 T(K)
[
G(F) —2— T(F)
We say ¢ satisfies the norm principle if
Nk /r(¢x(Gk)) € ¢(G(F)). (1.1)

If, for every separable field extension K/F, the above equation (1.1) holds, then
the norm principle is said to hold for ¢ : G — T.

The objective of this paper is to discuss the proof that the norm principle applies
to the group of similitudes GO(q) and the spinor group Spin(g) for a quadratic
form ¢ defined over F.
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2. Preliminaries:

All fields under consideration are assumed to have a characteristic distinct from
2. We denote the set of all non-zero elements of F' by F*, ie., F* = F\ {0}.

Consider a vector space V' which is finite dimensional over F. Recall that, by
a bilinear form b on V, we mean a map b: V x V — F satisfying the following:
(1) b(myz + may, z) = myb(x, z) + mab(y, 2).
(2) b(x, may + ms3z) = mab(x,y) + msb(z, 2).
for all z,y,z € V and for my, ma, m3 € F. A symmetric bilinear form is a bilinear
form b satisfies b(z,y) = b(y,x) for all vectors z and y in the vector space V. In
this paper, by a bilinear form we mean a symmetric bilinear form.

A map q: V — F is said to be a quadratic form on V if

(1) q(az) = a’q(2).
(2) by(z,y) = L[g(z + y) — q(x) — q(y)] is a (symmetric) bilinear form on V.

We call b, be the bilinear form associated to the quadratic form ¢. Also, given
a bilinear form b on V, one can associate a quadratic form ¢, to b by defining
qp(z) := b(x, ). We refer to (Chapter 1, [5]) for more details. The formq: V — F
is said to be regularif b, : V' x V' — F is nondegenerate. We call (V, ¢) a quadratic
space. Let (V,¢) and (W,) be two quadratic spaces over F. We say (V,¢)
is isometric to (W,1) (denoted by (V,¢) = (W, %)) if there is an isomorphism
oV — W such that ¢(z) = ¢(o(x)).

For a quadratic space (V,q) over F, if there exists a non-zero x € V such that
q(x) = 0, then we say ¢ is isotropic over F. Otherwise, ¢ is called anisotropic. For
n € N, let n.q denotes the n-fold orthogonal sum of ¢. If n.q is isotropic, then we
say q is weakly isotropic over F. Note that, a field extension K/F' is said to be
totally positive if any isotropic quadratic form ¢ on K becomes weakly isotropic
form on F. For more results on totally positive field extensions, please refer to [4].
A 2-dimensional quadratic form ¢ is said to be hyperbolic if ¢ = (1, —1). By Witt
decomposition theorem (see Chapter 1, Theorem 4.1, [3]), any quadratic form ¢
can be written as ¢ = q;, L q,, where ¢, denotes the hyperbolic part of g and ¢,
denotes the anisotropic part of q.

For a quadratic space (V, q) over F', let D(q) denote the set of elements in F'*
represented by ¢, i.e., D(q) = {& € F*| there exists v € Vsuch that ¢(v) = z}.

Lemma 2.1. Let (V,q) be a quadratic space over F. If o, x € F*, then x € D(q)
if and only if o®x € D(q).

Proof. Suppose, x € D(q), there exists v € V such that q(v) = z. For a € F*,
av € V. Since q is a quadratic form, we have q(a.v) = a?q(v) = a?z. Therefore,
o’z € D(q). Conversely, if a®?z € D(q), then there exists v € V such that
q(v) = o®x. Hence, q(2)v = J¢(v) = x. Thus z € D(q). O
Remark 2.2. From the above lemma 2.1, it is easy to see that D(q) consists of a
union of cosets of F*/F*2. In general, D(q) need not be a subgroup of F*. If
it forms a subgroup, then we call ¢ a group form over F (see Chapter 1, §2, [3]).
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However, every element in D(g) has an inverse in D(q). Indeed, for « € D(q), one
can write
7= (2712 2 € D(q).

We next discuss construction of Witt rings. Consider a commutative cancella-
tion monoid (X, +). Define a relation ~ on ¥ x ¥ by

(s,t) ~ (§/,t')ifand only if s+t =5+t € M.

Now consider (X x X)/ ~. We denote the equivalence class of (s,t) by [s,t]. Define
an addition by on (X x X)/ ~ by

[s,t] + [, t'] = [s + &, t + 1]
One can easily verify that the addition is well-defined, associative and commuta-
tive. For an equivalence class [s, t], we check that [¢, s] is the additive inverse for
[s,t]. Therefore, (¥ x ¥)/ ~ forms a group under the addition defined. We call

the group as Grothendieck group and denoted by Groth(X). Moreover, if ¥ has a
multiplication on it, then by defining the product

[s,t][s,t'] := [ss’ + tt', st’ + t5'],
Groth(X) turns into a ring.

Consider the set X(F'), which consists of all isometry classes of regular F-
quadratic forms. The Groth(3(F)) is said to be the Witt-Grothendieck ring of the
F-quadratic forms and denoted by W(F) := Groth(E(F)). The Witt ring W (F)
is obtained by quotienting the ring /VV(F ) by the ideal generated by the hyperbolic
spaces H, i.e., W(F) = W(F)/(H) (see [3], Chapter 2 for more details).

Theorem 2.3. There is an one to one correspondence between the elements of
the Witt ring W (F') and the isometry classes of all anisotropic forms over a field
F.

Proof. Any element in W (F) can be written as [q1] — [g2], where [q1], [g2] are
isometry classes of regular quadratic forms of ¢; and ¢y respectively. We claim
that any element in W (F') is of the form [g], where ¢ is a regular quadratic form
over F. Indeed, [¢1] — [¢2] = [¢1 L (—¢2)] — [¢2 L (—g2)]. Now, for any scalar
a€ F*,

(a) L {—a) = {(a,—a) Za(l,-1) =aH =0 W(F) (2.1)
which implies —(a) = (—a) € W(F). Since, [g2 L (—g2)] is a hyperbolic form over
F and hence it becomes zero over W (F'). Therefore, [g1] — [¢2] = [¢1 L (—¢2)] €
W (F) and hence any element in W (F) is of the form [g] for some quadratic form
q. By Witt decomposition theorem, every quadratic form g can be written as
q = gn L qq, where g, denotes the hyperbolic part of ¢ and ¢, denotes the
anisotropic part of g. Therefore, [¢] and [q,] are equal in W (F'). Thus, for each
element in W(F), there is some isometry classes of anisotropic form over F. To
prove the one to one correspondence, we need to show if [¢] and [¢)] are equal in
W (F) for two anisotropic quadratic forms ¢ and ¢, then ¢ is isometric to ¢. If
[¢] and [¢)] are same in W(F) = W(F)/(H), then [¢] = [¢] L oH € W(F) for
some o € NU {0}. Hence, ¢ = ¢ L oH as quadratic forms. On the other hand,
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¢ is anisotropic, and so it cannot contain any hyperbolic subpart in it. Therefore
a =0 and so, ¢ = 1. This completes the proof. O

3. Norm principles

Consider a field extension K of F'. Then, any F-vector space V can be consid-
ered as a K-vector space, given by Vi := V ®p K. Thus any F-quadratic space
(V,q) can also considered as a K-quadratic space (Vi, qx), where qx = q Qp K.

3.1. Scharlau’s norm principle. Let K/F be a field extension and let s be a
non-zero linear functional from K to F. Then for any quadratic space (W, ¢) over
K, we can construct a quadratic space over F by s.(W) := (W, s¢). Moreover, if
K/F is finite, dimp s.(W) = [K : F] - dimg(W). We next state the Frobenius
Reciprocity theorem.

Theorem 3.1 ([3], Chapter 7, Theorem 1.3). Let K/F be a field extension and
s: K — F be a non-zero linear functional. Let (V,q) be a quadratic space over
F and (W, ¢) be a quadratic space over K. Then there exists an isometry over F
given by

$x(Vk Qg W) 2V Qp 5. (W)

Consider the rational function field F(x) of F' with [F(z) : F] = n. Consider

an F-basis {1,z,...,2" '} on F(z). The unique non-zero F-linear functional
s: F(z) — F given by s(1) = 1 and s(z) = s(2?) = --- = s(z"~1) = 0. Then by
([3], Chapter 7, Corollary 2.4),

s«((1, —z)) = (1, =Ng/p(z)) € W(F). (3.1)

Recall that, two F-quadratic forms ¢; and ¢y are called proportional if ¢ = a.qo
for some a € F* (see [5], Chapter 2, Definition 8.4). In particular, if there exists
a € F* such that ¢; & a.qq, then « is said to be a proportionality (similarity)
factor of q;. For a quadratic form q over a field F, consider the set

G(q):={a€eF*:aq™q}

One can verify that G(q) is a subgroup of F*. It is called the group of propor-
tionality (similarity) factors of q. For any o € F*?2 by the property of quadratic
forms, we have «.q is isometric to q. Thus, « is a similarity factor for gq. Therefore,
F*2 C G(q). We now discuss Scharlau’s norm principle.

Theorem 3.2 (Scharlau). Let K be a finite field extension of F' and q be a regular
quadratic form over F. Then for any x € K*, the following inclusion holds
z € G(qx) = Ngy/r(z) € G(q).

In other words,

Nk /r(Glr)) € G(q)
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Proof. Let © € K*. Consider the intermediate field F(x) with FF C F(z) C K.
For convenience, let us denote the field F'(z) by E.

Case (i): Suppose K/F is an even degree extension, say, [K : E] = 2m. Then
Ng/e(x) = 2™, By the multiplicative property of norm, we have

Ng/r(z) = Ng/r - (Ng/p(2)) = Ng/p - (™) = (Ng/p(z™))? € F*?
Therefore, Ng,p(z) € G(q).

Case (ii): Suppose, [K : E] = 2m+1, an odd degree extension. As z € G(qxk),
we have z. qx = qi, i.e., (1, —2) @k qx = 0 € W(K). By ([3], Chapter 7, Theorem
2.5), the map W(E) — W (K) is injective. Hence (1, —2)@pqg =0 € W(E)) and
so x € G(qg). Now,

Nk/p(x) =Ng/p - (Ng/p())

=Np/p - (")

=Ng/r(z) - (Ng/p(a™))?
Thus if we show that Ng,p(x) € G(q), we are done. So we can assume K = F'(x)
and let s : K — F be the unique F-linear functional defined as earlier this section.
Applying the transfer s, to the equation (1, —z) ®x qx =0 € W(K), we get
0= s.(qx @K (1,—2)K)

~ g ®r $«((1, —z) k) (by Theorem 3.1)

= q ®r (1,-Ng/r(z)) € W(F) (by Equation 3.1)
Hence (1, —Ng/p(z)) ®r ¢ =0 € W(F) and so Ng/p(z) € G(q). O

Remark 3.3. Let GO(g) be the group of similitudes and ¢ : GO(q) — G,, be
the multiplier homomorphism (see [2], Chapter 3 for more details). The norm
principle for ¢ readily follows from the above Theorem 3.2 (see [1], example 3.3).

3.2. Knebusch’s norm principle. Recall the notion of D(q) for a F-quadratic
space (V,q) defined in section 2 as follows

D(q) ={d € F*| q(v) = d for some v € V}.

In the earlier section 3.2, we discuss the group of similarity factors G(q) with
respect to the norm map for a finite field extension. It will be of interest to
establish a parallel result for D(q) also. However, the main issue is that the set
D(q) may not form a subgroup of the multiplicative group F*. For example, the
quadratic form ¢ = (—1) over R does not represent 1. In fact, D(¢q) need not
be closed under multiplication. For example, as discussed in ([3], Chapter 1, §2),
consider the quadratic form ¢ = (1,1,1) = 2% + 3% + 22 over Q. Then clearly,
1,2,271,14 € D(q). But the product 271.14 = 7 ¢ D(q) as a sum of three squares
over Q cannot be used to express 7 (see Legendre’s three-square theorem).

Theorem 3.4 (Knebusch). Let K be a field extension of F and [K : F] =n. Let
q be a regular F-quadratic form. Suppose x € K*. If x is represented by the form
q®K K, then the norm of v, Nk p(x) € D"(q).
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Proof. If ¢ is isotropic over F', then by ([3], Chapter 1, Theorem 3.4), D(q) = F*.
Hence, Nk, p(z) € F* = D(q). Let’s suppose that ¢ is an anisotropic F-quadratic
form. For m > 1, let D™ (q) represent the collection of products of m elements in
D(q). Let d € D(q). Then for any ¢ € F*,

¢?=d-((¢/d)*-d) € D(q) - D(q) = D*(q)-
Thus, F*? C D?(q). More generally, F*?™ C D*™(q).

We now use induction on [K : F] = n to prove the theorem. If n = 1, then
K = F and we are done. Assume n > 2 in the following.

Case (i): Let z € F. If [K : F] = 2m, then
NK/F($) —_ me c F><2m C DZm(q).
If [K : F] = 2m + 1, then Nk, p(x) = 2™ € o - F*?™. Since K/F is an odd
degree extension, by ([3], Chapter 7, Corollary 2.9), z € D(¢qx) = = € D(q).

Hence
Ng/r(z) € x- F**™ C D(q) - D*™(q) = D"(q)

Case (ii): Suppose z ¢ F. Let E = F(z) and consider F' C E C K with
[K:E|=m, [E:F]=m/, n=mm/.

Suppose £/ C K. Then m > 1 and by the above case i, Ng/p(z) € D" (qg)
Therefore, Ng/r - Ng/p(x) € Ng/p(D™(qr)) Hence,
Nip(x) € Npjp(D™(qE)) (3.2)
As m > 1 and so m’ < n, by induction hypothesis on F/F, we have
Ng/p(z) € D™ (q), for each z € D(qg).
Hence, using 3.2, Nk /p(z) € D™ () = D"(q).
Suppose E = K. Let p(t) be the minimal polynomial of z over F, so
K = F(z) = F[t]/(p(t))

As D(qx) is closed under inverses, and x € D(qx), we have x=! € D(qx). So
there exists fi,..., fqa € F[t], satisfying

a(fi(x),..., fa(x)) =2~ "
Given that the minimal polynomial of = over F is p(t). So we have
t-q(fi(t),- -, fa(t)) = 1+ p(t)h(t) (3.3)
where d = dim ¢, h(t), fi(t) € F[t] with r := max{deg(f;)} < mn — 1. Since, ¢ is
anisotropic, 3.3 shows that ng := deg(h) =2r+1-n<2(n—-1)+1-n=n—1.

If h(t) = c- hi(t)---hs(t), where ¢ € F* and the h;’s are monic irreducible
polynomials in F[t], then c is the leading co-efficient of 1+ p(t)h(t). Using 3.3, we
have ¢ € D(q).

Now if s = 0 in the decomposition of h, i.e, if h(t) is a constant polynomial c,
then ng = 0 and

Nicsi(w) = (~1)"p(0) = (—1)"h(0) 1 = (~1)" et = (—1)2r et = !
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Since ¢ € D(q), we have Ng/p(x) € D(g). Suppose s > 1 in the decomposition of
h, and x; is a zero of h; in an algebraic closure of F. Then from (3.3), we have

x;l = q(f1($2)7 ey fd(‘rz)) S D(qF(L))

Since [F(x;) : F] < deg h <n — 1, by induction hypothesis on F(z;)/F,

Np(e,y p(zi) = (=1)%9 *h;(0) € D™ i (q).

Taking the product of these over i, we get

Since ¢~

(=1)"h1(0)- -~ hs(0) = (=1)" ¢ h(0) € D™(q).

1 ¢ D(q), we have

(=1)"h(0) € D"*(q).

As ng + 1 =n (mod 2) and recalling that F*2™ C D*?™(q), we have

(=1)"""h(0) € D"(q).

Therefore, Ng/p(z) = (=1)"p(0) = (=1)"*'h(0)~" € D"(g). The proof is now
complete. O

Remark 3.5. Consider a quadratic space (V, q) over F, and let T'"(V, ¢) be the even
Clifford group of (V, q). Consider the spinor norm homomorphism Sn : T+ (V, ¢) —
G- The elements in the Im(Snp) is the product of elements in D(q). The kernel
of the spinor norm homomorphism is called the spinor group of (V, ¢) and denoted
by Spin(V, ¢). The norm principle for Spin(V,q) follows the above Theorem 3.4
(see [1], Example 3.2).
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