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Abstract. The aim of this article is to discuss the proof that the norm prin-

ciple holds for the group of similitudes GO(q) and the spinor group Spin(q)

for a quadratic form q defined over F .

1. Introduction:

In this paper, we explore norm principles for connected reductive algebraic
groups defined over a field F , where char F is different from 2. Consider an
abelian algebraic group T over the field F which is linear and let K/F be a finite
field extension which is separable. The norm homomorphism NK/F , is defined as

NK/F : T (K) → T (F )

by sending t 7→
∏

γ γ(t), where γ ∈ Gal(F sep/F )
Gal(F sep/K) and F sep denotes the separable

closure of F . If T = Gm, then NK/F is the usual field norm NK/F : K× → F×.

Suppose G(F ) is a connected algebraic group over F which is linear, and T (F )
is a commutative algebraic group which is also linear over F . Let us consider an
algebraic group homomorphism ϕ : G(F ) → T (F ). For a separable field extension
K/F that is finite, let ϕK be the algebraic group homomorphism from G(K) to
T (K). Let us look into the following diagram:

G(K) T (K)

G(F ) T (F )

ϕK

NK/F

ϕ

We say ϕ satisfies the norm principle if

NK/F (ϕK(GK)) ⊆ ϕ(G(F )). (1.1)

If, for every separable field extension K/F , the above equation (1.1) holds, then
the norm principle is said to hold for ϕ : G→ T .

The objective of this paper is to discuss the proof that the norm principle applies
to the group of similitudes GO(q) and the spinor group Spin(q) for a quadratic
form q defined over F .

2000 Mathematics Subject Classification. Primary 11E10, 11E81; Secondary 12D15, 16K20.

Key words and phrases. Quadratic forms, Norm principles, Field norm.

    
   

 
 

Global and Stochastic Analysis 
Vol. 11 No. 3 (June, 2024)

Received: 01st April 2024               Revised: 24th May 2024           Accepted: 26th May 2024 

 

43



PRIYABRATA MANDAL

2. Preliminaries:

All fields under consideration are assumed to have a characteristic distinct from
2. We denote the set of all non-zero elements of F by F×, i.e., F× = F \ {0}.

Consider a vector space V which is finite dimensional over F . Recall that, by
a bilinear form b on V , we mean a map b : V × V → F satisfying the following:

(1) b(m1x+m2y, z) = m1b(x, z) +m2b(y, z).
(2) b(x,m2y +m3z) = m2b(x, y) +m3b(x, z).

for all x, y, z ∈ V and for m1,m2,m3 ∈ F . A symmetric bilinear form is a bilinear
form b satisfies b(x, y) = b(y, x) for all vectors x and y in the vector space V . In
this paper, by a bilinear form we mean a symmetric bilinear form.

A map q : V → F is said to be a quadratic form on V if

(1) q(αx) = α2q(x).
(2) bq(x, y) =

1
2 [q(x+ y)− q(x)− q(y)] is a (symmetric) bilinear form on V .

We call bq be the bilinear form associated to the quadratic form q. Also, given
a bilinear form b on V , one can associate a quadratic form qb to b by defining
qb(x) := b(x, x). We refer to (Chapter 1, [5]) for more details. The form q : V → F
is said to be regular if bq : V ×V → F is nondegenerate. We call (V, q) a quadratic
space. Let (V, ϕ) and (W,ψ) be two quadratic spaces over F . We say (V, ϕ)
is isometric to (W,ψ) (denoted by (V, ϕ) ∼= (W,ψ)) if there is an isomorphism
σ : V →W such that ϕ(x) = ψ(σ(x)).

For a quadratic space (V, q) over F , if there exists a non-zero x ∈ V such that
q(x) = 0, then we say q is isotropic over F . Otherwise, q is called anisotropic. For
n ∈ N, let n.q denotes the n-fold orthogonal sum of q. If n.q is isotropic, then we
say q is weakly isotropic over F . Note that, a field extension K/F is said to be
totally positive if any isotropic quadratic form q on K becomes weakly isotropic
form on F . For more results on totally positive field extensions, please refer to [4].
A 2-dimensional quadratic form q is said to be hyperbolic if q ∼= ⟨1,−1⟩. By Witt
decomposition theorem (see Chapter 1, Theorem 4.1, [3]), any quadratic form q
can be written as q = qh ⊥ qa, where qh denotes the hyperbolic part of q and qa
denotes the anisotropic part of q.

For a quadratic space (V, q) over F , let D(q) denote the set of elements in F×

represented by q, i.e., D(q) = {x ∈ F×| there exists v ∈ V such that q(v) = x}.

Lemma 2.1. Let (V, q) be a quadratic space over F . If α, x ∈ F×, then x ∈ D(q)
if and only if α2x ∈ D(q).

Proof. Suppose, x ∈ D(q), there exists v ∈ V such that q(v) = x. For α ∈ F×,
αv ∈ V . Since q is a quadratic form, we have q(α.v) = α2q(v) = α2x. Therefore,
α2x ∈ D(q). Conversely, if α2x ∈ D(q), then there exists v ∈ V such that
q(v) = α2x. Hence, q( 1

α )v = 1
α2 q(v) = x. Thus x ∈ D(q). □

Remark 2.2. From the above lemma 2.1, it is easy to see that D(q) consists of a
union of cosets of F×/F×2. In general, D(q) need not be a subgroup of F×. If
it forms a subgroup, then we call q a group form over F (see Chapter 1, §2, [3]).
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However, every element in D(q) has an inverse in D(q). Indeed, for x ∈ D(q), one
can write

x−1 = (x−1)2. x ∈ D(q).

We next discuss construction of Witt rings. Consider a commutative cancella-
tion monoid (Σ,+). Define a relation ∼ on Σ× Σ by

(s, t) ∼ (s′, t′) if and only if s+ t′ = s′ + t ∈M.

Now consider (Σ×Σ)/ ∼. We denote the equivalence class of (s, t) by [s, t]. Define
an addition by on (Σ× Σ)/ ∼ by

[s, t] + [s′, t′] := [s+ s′, t+ t′]

One can easily verify that the addition is well-defined, associative and commuta-
tive. For an equivalence class [s, t], we check that [t, s] is the additive inverse for
[s, t]. Therefore, (Σ × Σ)/ ∼ forms a group under the addition defined. We call
the group as Grothendieck group and denoted by Groth(Σ). Moreover, if Σ has a
multiplication on it, then by defining the product

[s, t][s′, t′] := [ss′ + tt′, st′ + ts′],

Groth(Σ) turns into a ring.

Consider the set Σ(F ), which consists of all isometry classes of regular F -
quadratic forms. The Groth(Σ(F )) is said to be the Witt-Grothendieck ring of the

F -quadratic forms and denoted by Ŵ (F ) := Groth(Σ(F )). The Witt ring W (F )

is obtained by quotienting the ring Ŵ (F ) by the ideal generated by the hyperbolic

spaces H, i.e., W (F ) = Ŵ (F )/⟨H⟩ (see [3], Chapter 2 for more details).

Theorem 2.3. There is an one to one correspondence between the elements of
the Witt ring W (F ) and the isometry classes of all anisotropic forms over a field
F .

Proof. Any element in Ŵ (F ) can be written as [q1] − [q2], where [q1], [q2] are
isometry classes of regular quadratic forms of q1 and q2 respectively. We claim
that any element in W (F ) is of the form [q], where q is a regular quadratic form
over F . Indeed, [q1] − [q2] = [q1 ⊥ (−q2)] − [q2 ⊥ (−q2)]. Now, for any scalar
a ∈ F×,

⟨a⟩ ⊥ ⟨−a⟩ ∼= ⟨a,−a⟩ ∼= a⟨1,−1⟩ = aH = 0 ∈W (F ) (2.1)

which implies −⟨a⟩ = ⟨−a⟩ ∈W (F ). Since, [q2 ⊥ (−q2)] is a hyperbolic form over
F and hence it becomes zero over W (F ). Therefore, [q1] − [q2] = [q1 ⊥ (−q2)] ∈
W (F ) and hence any element in W (F ) is of the form [q] for some quadratic form
q. By Witt decomposition theorem, every quadratic form q can be written as
q = qh ⊥ qa, where qh denotes the hyperbolic part of q and qa denotes the
anisotropic part of q. Therefore, [q] and [qa] are equal in W (F ). Thus, for each
element in W (F ), there is some isometry classes of anisotropic form over F . To
prove the one to one correspondence, we need to show if [ϕ] and [ψ] are equal in
W (F ) for two anisotropic quadratic forms ϕ and ψ, then ϕ is isometric to ψ. If

[ϕ] and [ψ] are same in W (F ) = Ŵ (F )/⟨H⟩, then [ϕ] = [ψ] ⊥ αH ∈ Ŵ (F ) for
some α ∈ N ∪ {0}. Hence, ϕ ∼= ψ ⊥ αH as quadratic forms. On the other hand,
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ϕ is anisotropic, and so it cannot contain any hyperbolic subpart in it. Therefore
α = 0 and so, ϕ ∼= ψ. This completes the proof. □

3. Norm principles

Consider a field extension K of F . Then, any F -vector space V can be consid-
ered as a K-vector space, given by VK := V ⊗F K. Thus any F -quadratic space
(V, q) can also considered as a K-quadratic space (VK , qK), where qK = q ⊗F K.

3.1. Scharlau’s norm principle. Let K/F be a field extension and let s be a
non-zero linear functional from K to F . Then for any quadratic space (W,ϕ) over
K, we can construct a quadratic space over F by s∗(W ) := (W, sϕ). Moreover, if
K/F is finite, dimF s∗(W ) = [K : F ] · dimK(W ). We next state the Frobenius
Reciprocity theorem.

Theorem 3.1 ([3], Chapter 7, Theorem 1.3). Let K/F be a field extension and
s : K → F be a non-zero linear functional. Let (V, q) be a quadratic space over
F and (W,ϕ) be a quadratic space over K. Then there exists an isometry over F
given by

s∗(VK ⊗K W ) ∼= V ⊗F s∗(W )

Consider the rational function field F (x) of F with [F (x) : F ] = n. Consider
an F -basis {1, x, . . . , xn−1} on F (x). The unique non-zero F -linear functional
s : F (x) → F given by s(1) = 1 and s(x) = s(x2) = · · · = s(xn−1) = 0. Then by
([3], Chapter 7, Corollary 2.4),

s∗(⟨1,−x⟩) = ⟨1,−NK/F (x)⟩ ∈W (F ). (3.1)

Recall that, two F -quadratic forms q1 and q2 are called proportional if q1 ∼= α.q2
for some α ∈ F× (see [5], Chapter 2, Definition 8.4). In particular, if there exists
α ∈ F× such that q1 ∼= α.q1, then α is said to be a proportionality (similarity)
factor of q1. For a quadratic form q over a field F , consider the set

G(q) := {α ∈ F× : α.q ∼= q}

One can verify that G(q) is a subgroup of F×. It is called the group of propor-
tionality (similarity) factors of q. For any α ∈ F×2, by the property of quadratic
forms, we have α.q is isometric to q. Thus, α is a similarity factor for q. Therefore,
F×2 ⊆ G(q). We now discuss Scharlau’s norm principle.

Theorem 3.2 (Scharlau). Let K be a finite field extension of F and q be a regular
quadratic form over F . Then for any x ∈ K×, the following inclusion holds

x ∈ G(qK) =⇒ NK/F (x) ∈ G(q).

In other words,

NK/F (G(qK)) ⊆ G(q)
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Proof. Let x ∈ K×. Consider the intermediate field F (x) with F ⊆ F (x) ⊆ K.
For convenience, let us denote the field F (x) by E.

Case (i): Suppose K/E is an even degree extension, say, [K : E] = 2m. Then
NK/E(x) = x2m. By the multiplicative property of norm, we have

NK/F (x) = NE/F · (NK/E(x)) = NE/F · (x2m) = (NE/F (x
m))2 ∈ F×2

Therefore, NK/F (x) ∈ G(q).

Case (ii): Suppose, [K : E] = 2m+1, an odd degree extension. As x ∈ G(qK),
we have x. qK ∼= qk, i.e., ⟨1,−x⟩⊗K qK = 0 ∈W (K). By ([3], Chapter 7, Theorem
2.5), the map W (E) →W (K) is injective. Hence ⟨1,−x⟩⊗E qE = 0 ∈W (E)) and
so x ∈ G(qE). Now,

NK/F (x) =NE/F · (NK/E(x))

=NE/F · (x2m+1)

=NE/F (x) · (NE/F (x
m))2

Thus if we show that NE/F (x) ∈ G(q), we are done. So we can assume K = F (x)
and let s : K → F be the unique F -linear functional defined as earlier this section.
Applying the transfer s∗ to the equation ⟨1,−x⟩ ⊗K qK = 0 ∈W (K), we get

0 = s∗(qK ⊗K ⟨1,−x⟩K)

∼= q ⊗F s∗(⟨1,−x⟩K) (by Theorem 3.1)

∼= q ⊗F ⟨1,−NK/F (x)⟩ ∈W (F ) (by Equation 3.1)

Hence ⟨1,−NK/F (x)⟩ ⊗F q = 0 ∈W (F ) and so NK/F (x) ∈ G(q). □

Remark 3.3. Let GO(q) be the group of similitudes and ϕ : GO(q) → Gm be
the multiplier homomorphism (see [2], Chapter 3 for more details). The norm
principle for ϕ readily follows from the above Theorem 3.2 (see [1], example 3.3).

3.2. Knebusch’s norm principle. Recall the notion of D(q) for a F -quadratic
space (V, q) defined in section 2 as follows

D(q) = {d ∈ F×| q(v) = d for some v ∈ V }.
In the earlier section 3.2, we discuss the group of similarity factors G(q) with
respect to the norm map for a finite field extension. It will be of interest to
establish a parallel result for D(q) also. However, the main issue is that the set
D(q) may not form a subgroup of the multiplicative group F×. For example, the
quadratic form q = ⟨−1⟩ over R does not represent 1. In fact, D(q) need not
be closed under multiplication. For example, as discussed in ([3], Chapter 1, §2),
consider the quadratic form q = ⟨1, 1, 1⟩ = x2 + y2 + z2 over Q. Then clearly,
1, 2, 2−1, 14 ∈ D(q). But the product 2−1.14 = 7 /∈ D(q) as a sum of three squares
over Q cannot be used to express 7 (see Legendre’s three-square theorem).

Theorem 3.4 (Knebusch). Let K be a field extension of F and [K : F ] = n. Let
q be a regular F -quadratic form. Suppose x ∈ K×. If x is represented by the form
q ⊗K K, then the norm of x, NK/F (x) ∈ Dn(q).
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Proof. If q is isotropic over F , then by ([3], Chapter 1, Theorem 3.4), D(q) = F×.
Hence, NK/F (x) ∈ F× = D(q). Let’s suppose that q is an anisotropic F -quadratic
form. For m ≥ 1, let Dm(q) represent the collection of products of m elements in
D(q). Let d ∈ D(q). Then for any c ∈ F×,

c2 = d · ((c/d)2 · d) ∈ D(q) ·D(q) = D2(q).

Thus, F×2 ⊆ D2(q). More generally, F×2m ⊆ D2m(q).

We now use induction on [K : F ] = n to prove the theorem. If n = 1, then
K = F and we are done. Assume n ≥ 2 in the following.

Case (i): Let x ∈ F . If [K : F ] = 2m, then

NK/F (x) = x2m ∈ F×2m ⊆ D2m(q).

If [K : F ] = 2m + 1, then NK/F (x) = x2m+1 ∈ x · F×2m. Since K/F is an odd
degree extension, by ([3], Chapter 7, Corollary 2.9), x ∈ D(qK) =⇒ x ∈ D(q).
Hence

NK/F (x) ∈ x · F×2m ⊆ D(q) ·D2m(q) = Dn(q)

Case (ii): Suppose x ̸∈ F. Let E = F (x) and consider F ⊆ E ⊆ K with
[K : E] = m, [E : F ] = m′, n = mm′.

Suppose E ⊊ K. Then m > 1 and by the above case i, NK/E(x) ∈ Dm(qE)
Therefore, NE/F ·NK/E(x) ∈ NE/F (D

m(qE)) Hence,

NK/F (x) ∈ NE/F (D
m(qE)) (3.2)

As m > 1 and so m′ < n, by induction hypothesis on E/F , we have

NE/F (x) ∈ Dm′
(q), for each x ∈ D(qE).

Hence, using 3.2, NK/F (x) ∈ Dmm′
(q) = Dn(q).

Suppose E = K. Let p(t) be the minimal polynomial of x over F , so

K = F (x) ∼= F [t]/(p(t))

As D(qK) is closed under inverses, and x ∈ D(qK), we have x−1 ∈ D(qK). So
there exists f1, . . . , fd ∈ F [t], satisfying

q(f1(x), . . . , fd(x)) = x−1.

Given that the minimal polynomial of x over F is p(t). So we have

t · q(f1(t), . . . , fd(t)) = 1 + p(t)h(t) (3.3)

where d = dim q, h(t), fi(t) ∈ F [t] with r := max{deg(fi)} ≤ n − 1. Since, q is
anisotropic, 3.3 shows that n0 := deg(h) = 2r+1−n ≤ 2(n− 1)+ 1−n = n− 1.

If h(t) = c · h1(t) · · ·hs(t), where c ∈ F× and the hi’s are monic irreducible
polynomials in F [t], then c is the leading co-efficient of 1+ p(t)h(t). Using 3.3, we
have c ∈ D(q).

Now if s = 0 in the decomposition of h, i.e, if h(t) is a constant polynomial c,
then n0 = 0 and

NK/F (x) = (−1)np(0) = (−1)n+1h(0)−1 = (−1)n+1c−1 = (−1)2r+1+1c−1 = c−1
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Since c ∈ D(q), we have NK/F (x) ∈ D(q). Suppose s ≥ 1 in the decomposition of
h, and xi is a zero of hi in an algebraic closure of F . Then from (3.3), we have

x−1
i = q(f1(xi), . . . , fd(xi)) ∈ D(qF (xi)).

Since [F (xi) : F ] ≤ deg h ≤ n− 1, by induction hypothesis on F (xi)/F ,

NF (xi)/F (xi) = (−1)deg hihi(0) ∈ Ddeg hi(q).

Taking the product of these over i, we get

(−1)n0h1(0)· · ·hs(0) = (−1)n0c−1h(0) ∈ Dn0(q).

Since c−1 ∈ D(q), we have

(−1)n0h(0) ∈ Dn0+1(q).

As n0 + 1 ≡ n (mod 2) and recalling that F×2m ⊆ D×2m(q), we have

(−1)n+1h(0) ∈ Dn(q).

Therefore, NK/F (x) = (−1)np(0) = (−1)n+1h(0)−1 ∈ Dn(q). The proof is now
complete. □

Remark 3.5. Consider a quadratic space (V, q) over F , and let Γ+(V, q) be the even
Clifford group of (V, q). Consider the spinor norm homomorphism Sn : Γ+(V, q) →
Gm. The elements in the Im(SnF ) is the product of elements in D(q). The kernel
of the spinor norm homomorphism is called the spinor group of (V, q) and denoted
by Spin(V, q). The norm principle for Spin(V, q) follows the above Theorem 3.4
(see [1], Example 3.2).
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