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Abstract. Most of the conditions for the existence of Hamiltonian graph

trace their origin from the papers of Dirac (1952) and Ore (1960). In this

paper, we have tried to collect conditions for the existence of Hamiltonian
graphs.

1. Preamble

Let G = (V,E) be a graph with minimum degree δ(G) and independence num-
ber α(G). For a vertex v ∈ V (G), d(v) and N(v) denotes the degree of v and
neighborhood of v in G, respectively. A number of sufficient conditions for a sim-
ple connected graph of finite order to be Hamiltonian have been proved. The two
well known conditions for a graph G to be Hamiltonian are

• Dirac [19] Condition (δ(G) ≥ n
2 ).

• Ore’s [47] condition (for any two nonadjacent vertices u and v, d(u) +
d(v) ≥ n).

In 1978, Bondy [9] proved that any simple graph G which satisfy Ore’s con-
dition also satisfy Chvátal − Erdös condition. Chvátal − Erdös theorem is the
generalisation of Ore’s theorem. Bondy [9] proved that every m-regular simple
graph on 2m + 1 vertices is Hamiltonian for m > 0. Ainouche and Christofides
[3] derived sufficient conditions for a graph to be Hamiltonian. These conditions
are stronger version of Bondy-Chvátal [10] conditions. Ainouche and Chrisofides
[3] defined the following notations: Two a− b paths in a graph G are compatible
if the vertices belonging to both paths occur in the same order along the paths
(when they are traversed from a to b). If µ is a given a− b path in G, then hµab(G)
be the maximum integer k such that G contains k internally vertex disjoint a− b
paths, each one compatible to µ. Let αab(G) be the maximum cardinality of an
independent vertex set of G containing both a and b. If µ is a Hamiltonian a− b
path and hµab ≥ αab(G), then they proved that G has Hamiltonian circuit. Ain-
ouche and Chrisofides [3] also defined lab(G) = |Γ(a)∩Γ(b)|, where Γ(i) is the set
of neignbouring vertices of vertex i and if a and b are two non-adjacent vertices of
a graph G such that αab(G) ≤ lab(G) then G is Hamiltonian if and only if G+ ab
is Hamiltonian. They have also proved the Bondy-Chvátal [10] conditions. Sir
William Rowan Hamilton in 1859 suggested a class of a graph in which there exist
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a spanning cycle containing every vertex of dodecahedron. If a graph contains this
spanning cycle, then the graph is said to be Hamiltonian graph and the cycle is
called Hamiltonian cycle (circuit). After removing an edge from a Hamiltonian
cycle, we are left with a path, known as Hamiltonian path. If exists a Hamiltonian
cycle in a connected graph G with n vertices, then the length of the Hamiltonian
path is n − 1. In this paper, we have tried to collect conditions for the existence
of Hamiltonian graphs.

2. Hamiltonicity in Random Graphs

A classic theorem by Dirac [19] implies that the local resilience of Kn with
respect to the containment of a Hamilton cycle is 1/2 + o(1). Asymptotically this
remains true if Kn is replaced by a Sparser graph. For instance, it was shown
by Lee and Sudakov [40] that the random graph G(n, p), which is defined on n
vertices with each pair of vertices forming an edge independently with probability
p, satisfies the following with high probability if p = Ω(logn/n): whichever edges
an adversary removes from G(n, p) respecting that 1/2+o(1) of the incident edges
remain at every vertex, the resulting graph is still Hamiltonian. Towards the
advancement of random graphs, Komlós and Szemerédi [37] and Bollobás [8] stated
that a random graph G ∼ G(n, p) with np−ln n−ln ln n −→∞, is asymptotically
almost surely Hamiltonian. If np − ln n − ln ln n −→ −∞, then asymptotically
almost surely δ(G) ≤ 1, and thus the graph G is not Hamiltonian and this is true
for δ(G) ≥ 2. Hefetz, Krivelevich and Szabó [32] proved the if p ≤ 1

2 is such that
p.n ln ln ln ln n
lnn. ln ln ln n → ∞, then the probabability of G ∼ G(n, p) having δ(G) < 2 is of

order 	(np(1 − p)n), and 1 ≤ Pr (G is notHamiltonian)
Pr (δ (G)< 2) ≤ exp (O( ln n ln ln ln nln ln ln ln n )). In

2020, Yahav Alon and Michael Krivelevich [5] proved the following: Let 0 ≤ p =
p(n) ≤ 1 and let G ∼ G(n, p), then

• Pr(G is not Hamiltonian) = (1 + o(1)) Pr(δ(G) < 2)
• Pr(G contains no perfect matching) = (1 + o(1)) Pr(δ(G) = 0)

For a given graph Γn with n verteices and m edges, Tony Johansson [36] defined
the Erdös-Rényi graph process with host graph Γn and proved that with high
probability the graph Γn,t where t ≤ m becomes Hamiltonian at the same moment
its minimum degree reaches 2.

3. Independent Conditons

Hamiltonian closure of a graph G is a subgraph of G with vertex set V obtained
by repeatedly adding edges between nonadjacent vertices u, v ∈ V such that d(u)+
d(v) ≥ n untill no such pair of vertices exist. A simple graph with n vertices
is Hamiltonian if and only if its closure is Hamiltonian [54]. In 1884 Tait [53]
conjectured that every 3-connected planar cubic graph has a Hamiltonian cycle.
In 1946, Tutte [54] constructed a graph as a counterexample with 46 vertices, 69
edges and 25 faces and refused Tait’s conjecture. Grinberg’s theorem [31] gives
the necessary condition for a planar graph to be Hamiltonian.

Xia Hong and Huihui Zhang [34] gave Hamilton sufficient condition for com-
pletely independent spanning trees. For k spanning trees T1, T2, ..., Tk of a graph
G, they called these k spanning trees completely independent, if the paths from
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the vertex u to v of G in these k trees are pairwise openly disjoint. It has been
asked whether sufficient conditions for Hamiltonian graphs are also sufficient for
the existence of two completely independent spanning trees. They [34] also proved
that if G is a graph with n vertices and |N(x)∪N(y)| ≥ n

2 , |N(x)∪N(y)| ≥ 3 for
every two nonadjacent vertices x, y of G, then it has two completely independent
spanning trees. In a note, Qin, Hao, Pai, Chang [51] first attend the restriction on
the number of vertices and point out that there is a flaw in their proof and gave
an amendment to correct the proof.

4. Spectral Conditions

Let A(G) be the adjacency matrix of the graph G. The largest eigenvalue of
A(G) is said to be spectral radius of G and it is denoted by ρ(G). The matrix
Q(G) = D(G) +A(G) is the signless Laplacian matrix, where D(G) is the degree
diagonal matrix of G. The signless Laplacian spectral radius is denoted by q(G).
Sufficient conditions for a graph to be Hamiltonian and traceable in terms of
spectral radius are given by Fiedler and Nikiforov [26]. The signless Laplacian
spectral radius of the complement of a graph is scrutinized by Zhou [57] and
provided sufficient conditions for the existence of Hamiltonian graph. Let G be a
bipartite graph with X and Y be the bipartition of the vertex set V of G. Let G∗

be the quasi-complement of G, where |X| = |Y | = n ≥ 2. If ρ(G∗) ≤
√
n− 1) then

G is Hamiltonian [42]. Similarly, if ρ(G∗) ≤
√

n−2
2 then G is Hamiltonain [41].

Lu, Liu and Tian [44] proved for a bipartite graph G of size m with bipartition
X and Y , where |X| = |Y | = n ≥ 2. If δ ≥ 1,m ≥ n2 − n + 1, then G is
Hamiltonian unless G ∼= Kn,n−1 + e. Bipartite graph with δ ≥ 2 and with m
edges, where |X| = |Y | = n ≥ 4, if m ≥ n2− 2n+ 4, then G is Hamiltonain unless
G ∼= Kn,n−2 + 4e [42].

5. Hamiltonicity of Kneser Graphs

The Kneser graph K(n, k) has as vertices the k-subsets of [n]. Two vertices are
adjacent if the k-subsets are disjoint. The Kneser graph K(2k−1, k−1) is an odd
graph Ok for k ≥ 2. In 1972, Lloyd and Meredith [43] proved that the odd graph
Ok is Hamiltonian for 4 ≥ k ≥ 7. Mather [45] proved that the odd graph Ok is
Hamiltonian for k ≥ 8 if k 6= 3. Heinrich and Wallis [33] proved that K(n, k) is
Hamiltonian for k ≤ 8 when n ≥ 2k + 1. Chen [14] proved that if n ≥ 3k then
K(n, k) is Hamiltonian and gave a short proof in [16] when k divides n. Chen [15]
improved his results and proved the following:

• If n ≥ L(k) = 3k+1+
√
5k2−2k+1
2 , then K(n, k) is Hamiltonian.

• If n ≥ L(k) = 3k+1+
√
5k2−2k+1
2 , then H(n, k) is Hamiltonian.

J. Bellmann and B. Schulke [7] proved that the Kneser graphs K(n, k) are
Hamiltonian for n ≥ 4k and bipartite Kneser graphs H(n, k) is Hamiltonian for
n > 3k.
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6. k-Connected Graphs

A graph G is said to be k-connected if there does not exist a set of k−1 vertices
whose deletion disconnect the graph G. In other words, if the vertex connectivity
of a graph G is at least k, then the graph G is said to be k-connected. In this
section, we accumulate some of the best known conditions for a 2-connected graph
G to be Hamiltonian.

• ab /∈ E ⇒ |N(a) ∪N(b)|+min {d(u)|u ∈ V } ≥ n [24]
• ab /∈ E ⇒ |N(a) ∪N(b)| ≥ 2n−1

3 [25]
• ab /∈ E ⇒ |N(a) ∪N(b)|+ d(a) + d(b) ≥ (2n− 1) [8]
• ab /∈ E ⇒ N(a) ∪N(b) +max{d(a), d(b)} ≥ n [27]
• d(u) + d(v) + d(w) ≥ n+ |N(u) ∩N(v) ∩N(w)| [27]
• ab /∈ E ⇒ |N(a) ∪N(b)| ≥ 2n−3

3 [1],[6]
• ab /∈ E ⇒ |N(a) ∪N(b)|+min{d(u)|u /∈ {a, b} ∪N(a) ∪N(b)} ≥ n [2]

Chvátal and Erdös [18] proved for a k-connected graph G that if the indepen-
dence number α if α ≤ k, then G is Hamiltonian. For a k-connected graph of order
n, suppose ∃ some s, 1 ≤ s ≤ k such that for all independent set S ⊂ V (G) of cardi-

nality s, we have d(S) > s(n−1)
s+1 , then G is Hamiltonian [28]. Ainouche [2] has been

updated the previous results such that if d(S) > ( s(n−1)s+1 )− k
s+1

⌊
s
2

⌋
− j(S)

s+1

⌊
s−1
2

⌋
,

then G is Hamiltonian. Ainouche [2] has been continuously done work in this
regard and gave sufficient conditions for a k-connected graph G of order n to be
Hamiltonian. These sufficient conditions are :

• d(S) > ( s(n−1)s+1 )− k
s+1

⌊
s
2

⌋
• d(S) > k

k+1 (n−
⌊
k
2

⌋
− 1)

• d(S) > ( s(n−1)s+1 )− λ(S)
s+1 (

b s
2c
b s+1

2 c
)− ( j(S)s+1 )

⌊
s−1
2

⌋
• d(S) > ( s(n−1)s+1 )− λ(S)

s+1 (
b s

2c
b s+1

2 c
)

• d(S) > ( s(n−1)s+1 )− j(S)
b s

2c
s+1

• d(S) +max{max{d(u)|u ∈ S},min{d(u)|u /∈ S ∪N(S)}} ≥ n
• d(S) +min{d(u)|u /∈ S ∪N(S)} ≥ n

Let G be a k-connected graph of order n. Suppose there exists some s, 1 ≤ s ≤ k
such that for every independent set X ⊂ V of cardinality s + 1, if one of the
condition :

• d(X) +
λ(x)+i(X)b s−1

2 c
b s+1

2 c
≥ n

• d(X) + i(X) ≥ n
• d(X) + λ(X)

b s+1
2 c
≥ n

is satisfied, then G is Hamiltonian [2].
In 1984 Fan [23] generalized Ore’s and Dirac’s conditions and proved that if a 2-

connected graph of order n and max{d(x), d(y)} ≥ n
2 for each pair of nonadjacent

vertices x and y with d(x, y) = 2 in G, then G is Hamiltonian. In 1993, Chen [13]
proved that if G is a 2-connected graph of order n, and if max{d(x), d(y)} ≥ n

2
for each pair of nonadjacent vertices x, y with 1 ≤ |N(x) ∩ N(y)| ≤ α(G) − 1,
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then G is Hamiltonian. Chen, Egawa, Liu and Saito [17] further showed that if
G is a k-connected graph of order n, and if max{d(v) : v ∈ S} ≥ n

2 for every
independent set S of G with |S| = k which has two distinct vertices x, y ∈ S
such that d(x, y) = 2, then G is Hamiltonian. In 2007, Zhao, Lai and Shao [56]
generalize the conditions given in [13], [17], [19], [23] and proved that if G is a
k-connected graph of order n and if max{d(v) : v ∈ S} ≥ n

2 for every independent
set S of G with |S| = k which has two disjoint vertices x, y ∈ S satisfying 1 ≤
|N(x)∩N(y)| ≤ α(G)−1, then G is Hamiltonian. In 1952, G. A. Dirac [19] proved
the following theorem : let G be a finite connected graph with single edges and no
separating vertices, then either G has a Hamiltonian circuit or the maximal length
c of a circuit satisfies

⌊
c
2

⌋
≥ ρ0, where ρ0 is the smallest degree of any vertex. This

theorem has also been proved and extended by Erdös and Gallai [20] and by Ore
[48]. In 1967, Ore [49] improved Dirac’s theorem and gave a result, when G has
no Hamiltonian circuits, then l ≥ ρ0 + ρ1 + 1 except for the two types of graphs
: (i) star graphs Sr(H) where H has ρ+ 1 vertices and r ≥ ρ0 + 2 (ii) one-vertex
composition of k ≥ 3 complete graphs on ρ0 + 1 vertices. Here, we are discussing
about a very important topic in graph theory which is platonic graph. In three-
dimensional space, a solid constructed by polygonal faces with the same number
of faces meeting at each vertex which are congruent (identical in shape and size)
and regular (all angles equal and all sides equal) is called platonic solid. There are
five solids which meet these criteria: tetrahedron, cube, octahedron, dodecahedron
and icosahedron. In 2004, Brain Hopkins [35] developed a combinatorial method
to show that the dodecahedron graph has, upto rotation and refection, a unique
Hamiltonian cycle. They called platonic graphs with this property, topologically
uniquely Hamiltonian. They used the same method to demonstrate topologically
distinct Hamiltonian cycles on the icosahedron graph and to show that a regular
graph embeddable on the 2-holed torus is topologically uniquely Hamiltonian.

7. Graphs with Moderate Degree

Gordon [29] proved that there are some non-Hamiltonian regular graphs with
2n vertices. A 2-connected 2n vertices regular graph of degree n − 2 and n ≥ 6
is Hamiltonian [22] and extended this result for regular graphs of degree n − k,
k ≥ 3 [21]. Erdös and Hobbs [21] proved that if k is an integer not less than 3,
and if G is a 2-connected graph with 2n − a vertices, a ∈ {0, 1}, which is regular
of degree n− k, then G is Hamiltonian if a = 0 and n ≥ k2 + k+ 1 or if a = 1 and
n ≥ 2k2 − 3k + 3. Let P be the longest cycle in G and R = V (G)− V (P ). Let v
and w be in R. Then v is not adjacent to any vertex in Av ∪ Bv, Av and Bv are
independent sets of vertices, and w is joined to at most one vertex of Av and to at
most one vertex in Bv. Erdös and Hobbs [21] also given that if n ≥ 3k+2−a, then
R is independent and if n ≥ k2 + k + 1, then r + s ≤ k. Rahman, Kaykobad and
Firoz [52] proved that let P =< x1, x2, ......, xp > be a longest path of G such that
p ≥ 4. If dx1 + dxp ≥ p− 1 + l, l ≥ 1, then there exists at least l crossover edges.
They also proved for all pairs of nonadjacent vertices u, v one has du +dv ≥ n− 2,
then G has a Hamiltonian path. Some of the other best known conditions are also
given in [4], [7], [8], [11], [12], [29], [30], [38], [39], [46], [50], [55].
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