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A MATHEMATICAL MODEL FOR LINEAR APPROXIMATION
OPERATORS CONSTRUCTED USING WAVELETS

HARUN KARSLI

ABSTRACT. It is well known that wavelets are mathematical functions that
divide values of functions (signals) into different time and frequency compo-
nents. Hence they have the great advantage to identify fine details in a signal.
The main advantages of Wavelet analysis compared to the Fourier analysis are
that they offer simultaneous localization in the frequency and time domain.
In this work, we focus on the wavelet type generalized sampling operators.
Moreover we will state some of their structural and approximation results.

1. Introduction

Let B(R),C(R) and LP(R)(1 < p < o0) are the spaces of bounded, continu-
ous and Lebesgue intagrable functions, respectively, with their well-known usual
norms.

The generalized sampling series, which Paul Leo Butzer presented to the world
of mathematics and gives the general solution of the approximation problem on
the entire real axis, are defined as

(Suf)(t):= Y _ f (k/n)o(nt — k), (t€R), (1.1)
kEZ
where f € B(R),
e e CR)NL'(R), > @lg—k) =1, Vg€R, (1.2)
kEZ
and the moments satisfy
mu(¢) =Y plg—k)(q— k)" =C < o0
k€EZ
for v = 1,2 and for some x > 0
My(p) :=sup Y |o(g — k)| |g — k|" < o0
9€R ez
holds true (see [5]-[6], [8]-[10] and [13]).
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The main focus of this work is to create an operator using Daubechies’ compactly-i
supported wavelets (see [1], [12] and some new papers of the authors [14], [15], [16]
and [17]). The new results represent a natural extensions of the results for classical
generalized sampling operators and their Kantorovich type modifications.

2. Auxiliary results

A family (Dj);ez of closed sub-spaces of L?(R) satisfies

vl)
..CD_1CDyCD;C..
closure UDj = Ly(R), ﬂDj = {0}
J J
v2)

Vi € Z,<() € Dj & <(2) € Djya,

Vii € Z,<(-) € Dj & <(-—2794) € Dy,
is called Multi-Resolution Analysis (MRA).

Relating to the sets (Dj),cz and MRA, wavelets refer to the set of orthonormal
functions of the form

1 t—v 1 t—v
‘bn,l/(t):\/ﬁ(ﬁ(n), l917,u(75)=\/ﬁ19< ; ), n>0,vER,

where ¢ and ¥ have finite energy and orthogonal, called scale functions (father)
and the corresponding wavelets (mother), respectively. The father and mother

wavelets satisfy
/d)(p)dp = 1,/19(p)dp =0.
R R

Note that the elements of (Dj),;cz are the father wavelets and whereas the
elements of their orthogonal complements are the mother wavelets. See [11], [18],
[19], [15] and [16].

As an important and useful wavelet is due to I. Daubechies, which construct an
orthonormal basis for Lo, given as:

Assume that ¢ € Lo (R) satisfies;

w1) supp (¥) C [0,A] (A > 0),
w2) H{w(p)dp =1,

w3)
/pjw(p)dp =0, j=1,..,N.

R
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Inspired by the above informations, we first create an operator through the com-
pactly supported wavelets of Daubechies discussed in this article.

Definition 1. Let f € C' (R), ¢ is a kernel function and let ) € L. (R) satisfies
w1)-w3). The wavelet type operators are defined by:

WS H)(t) : =n> pnt—k / £ (o) ¥(np — K)dp (2.1)
kEZ
Ptk
mt—k) [ f2=2) w(p)dp,  (teR).
gzw 0/ ( - ) p)dp

Remark 1. Let ¥(p) := X[0,1)(p), then one has

WS ) = 0> gt —k) / £ (o) lnp — K)dp

kEZ R
= > elnt—k / (Tzk) (r)dr.
keZ

This shows that our operators contains the Kantorovich operators as a special
case.

3. Fundamental and some convergence properties

We are now ready to establish a strong and interesting relation between the
original and wavelet type operators, namely (1.1) and (2.1):

Theorem 1. Let f € C(R), then

(WSnzt)(t) = (Spz)(t), £=0,1,...,K
holds true.
Proof. We have

(WSnz*)(t) = n Z o(nt — k) | 2*p(nx — k)dx

B

keZ
- ikgg@(m_k)k/ [é( . >T’ké‘11 Y(r)dr

By w3), for i #0
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and for i = 0 we get

WSah)t) = x> lnt k) [ Kor)dr

(WS (=8 )t) = 0> gt — / 2 — 0 p(nz — k)da
R

Owing to w2) and w3) we get

(WSn (z —t))(t)

% Z p(nt — k) (k — nt)e

kEZ
= (Su@—1)").

Theorem 2. At each continuity point pg of f

lim (WS, f)(po) = f(po)

n— oo

holds true.

Proof. Clearly

[f(p) = flpo)| <e
holds true when |p — po| < 4, and

1f(p) = flpo)l < 2]If]l
holds true, when |p — po| > 0.

So one has
(WSnf)(po) = flpo) = n>_ p(npy — /f W(np — k)dp — f(po)
kEZ 2
= (npo — f T)dT — f(po)-
];ZQO £0 R/ < > 00
We know that
(WS,1)(t) = (S,1)(t) = 1. (3.1)
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Hence

|(WSnf) (po) — f(po)l

S npo - k) / (f (9) — F(po)) b(np — k)dp

kEZ

R
< et =0 [ |1 (FEE) = o)l ar
kez 5
Let us write
(WSwf) (o) — F(po)] < Pr+ P,
where
A= letn =0l [ |7 () < ston) ol ar
keZ R
T+ k
= Sletm-0l | |f( =5) — stow| l0(r)lar
keZ .
| = —po | <5
and
T+ k
n=Sletm -0l [ |7 () < )| lwtolar
keZ .
|T?Z *PO‘Z(S
Hence one has
T+ k
A= Sletm-nl [ | (TE) < s lecoar
kEZL
|%Lk—po‘<6
< My(@) el
and
Pog 20fI et -R) [ e
keZ
e
< 271 22y = o).

Finally we obtain
nlLrgO(WSnf) (po) = f(po)-

Corollary 1. Owing to the previous result one easily has
lim |[(WS,f)— fllo =0.
n—oo
Theorem 3. Let f € Cp(R). Then
IWSnflloe < K Nfllsc
is valid, where K = My () A ||[¥]|, -
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Proof. By (2.1) one has

(WS f) (1) SZIw(nt—k)]’f (25 twtotar
0

n
keZ

and hence follows

(WSf) (O] < D lelnt = B)]1fllog 19l A

keZ

Mo (@) [ flloo 191l o0 A-

IN

Now, for Cp[0,00) we denote W2 = {¢ € Cp[0,00) : ¢,¢" € Cgl0,00)}.
Consider the Peetre’s K —functional as;

Ky(0,0) := inf {[o =&l +0[1€" |}, 0 >0, (3.2)
Eew?
satisfies
Y wy(0, V8) < Ky(0,8) < Yuws(o, V6), (3.3)

where Y > 0 and

wao(0,V3) := sup  sup |o(z+2h)—20(x+h)+o(z) | (3.4)
0<h<V/6 2€[0,00)

is the modulus of smoothness of f.

Theorem 4. Let f € C(R). Then

lim (WS, f)(z) = f(z),

n—oo

and

(WSaf) (@) — ()] < (K +1) Ko <f; Ms (ip)  X*Mo () 1 2201 “0’) ,

n2
are valid, where K = X ||| ..

Proof. Let £ € W2. We have

t

€)= 6@ + € @)t =)+ [ (t= 0" (0)do, 1€ [0,50).

T
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In view of Remark 2 and (3.1), applying W S,,, we have

(wsu (¢@-a+ (i D)) ) @

x

|(W5,8) () = &()]

P ek ,
< ke};wwmg/[/w [ <v>|dv] w(r)ldr
< M1 X ot ) (2
=
= Al €71 3 ot ) [(fb —x)2+f;+22 (£ —w)]
< %[M2(¢)+)\2M0(¢)+2)\M1(¢)].

Using (3.2), the last inequality yields
(W) () = f@)] < inf (WS (f = Olloo +11f = Elloo +1(WSn8) (2) — (@)1}

Ml [M2 (9) + A2Mo () + 2AM; (¢)]

< If Yl + DS = Elle + 2 1€ 100}
- M () + XM () + 2AM1 (9) | i

< (K41 inf {If = €lloe + 2 1€ 100 3

_ G{+1ﬂﬁ(ﬁﬂﬁ(@+~vMayﬁ+zmﬂ(@).

Theorem 5. Let f € Cp(R) and u € (0,2) be fixed. Then
wo(f;t) = O(") = |(WSnf) (x) = f(z)| = O(1/n)*
holds true.

Proof. Owing to (3.3) and Theorem 4 one gets

U{+1ﬂ@<ﬁﬂb(@*'VM290+2MWM¢Q

(K +1) Cuw, (f; \/M2 () + X2 Mo () + 2AM, (@))

(WS f) (x) = f(2)]

IN

IN

n2

IN

A4é(@)4—A2A4b(w)4—2AA41(¢))“/2.

(K+DC<
Theorem 6. Let f € L'(R), then

IWSnflly < K flly
holds true, where K = nh |[¢|  |l¢ll;, b := |A] +1 and |e] is the floor function.
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Proof.

A

/|(WSnf)(t)|dt — /ngnt /f(TJrk) 7)dr| dt
2 kez o
= [t [l () o
EZL
< Yl k%k/u |du(/ (m—k>|d7>
< nllvl. Hsoulz/u )l du.

keZ

Setting h := |A| + 1. Hence we have

[ivsnona < all ey [ 1o
R REZ &
< nh ol el 151,
LN

here K = nh [|[¢[| . Il -
Theorem 7. Let f € L, (R) (1 <p < o0). Then

IWSnfll, < Kpllfll,

holds, where K, = n [|¢]|. [lli/? h2/?MP~D/P () > 0.

Proof. Clearly

1/p
( / (WS f) ()7 dt)
R

n p(nt — k) / f () v(nt — k)dr

P 1/p
dt)

Il
~
o

kez 2
P 1/p
< n lo(nt — k)| | |f(7)Y(nT —k)|dr | dt
[/ (zenf )
= W
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Using Jensen inequality one gets

W< g ) [ S letnt =) | [ 1) wter < wjar | ar
R kEZ 2
= M (p) / S 1 @ [T — B)P / o(nt — k) dt | dr
R keZ R
< nME () 6] el 3 / f ()P dr.
kEZ 4
So one has

and

WP < [9l1% el I, M5 (9)

W Sn fll,

IN

_ 1/p
(w12 il A LA M ()
= &,

-1
here K, = n |[¢]| . [olly/? R/PMFPVP (o).

(1]
2]

=)
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