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Abstract. In this paper, we introduce the stress product matrix SPM(G)

for a connected graph G, which is related to the second stress index. We

explore the properties of this matrix, establish bounds on its eigenvalues, and
define the stress product energy ESP (G) as the sum of the absolute eigenval-

ues. Additionally, we discuss its potential chemical relevance by comparing

ESP (G) with the π-electron energy of polyaromatic hydrocarbons.

1. Introduction

In this article, we will be focusing on finite, unweighted, simple, and undirected
graphs. Let G = (V,E) denote a graph. The degree of a vertex v in G is denoted
by d(v). The distance between two vertices u and v in G, denoted d(u, v), is the
number of edges in the shortest path (or geodesic) connecting them. A geodesic
path P is said to pass through a vertex v if v is an internal vertex of P , meaning
v lies on P but is not an endpoint of P . For standard terminology and notion in
graph theory, we follow the text-book of Harary [7].

Gutman [5] defined the energy of a graph G as the sum of the absolute val-
ues of its eigenvalues, denoted by E(G). Eigenvalues are crucial in understanding
graphs because they relate closely to almost every major graph invariant and ex-
treme property. Consequently, graph energy, a specific type of matrix norm, has
attracted attention from both pure and applied mathematicians. Spectral graph
theory focuses on matrices associated with graphs, including their eigenvalues and
energies, and is vital for analyzing graph matrices through matrix theory and lin-
ear algebra. Graph energy provides valuable insights into various structural and
dynamic properties of graphs. It is a measure that captures the collective influ-
ence of a graph’s eigenvalues, linking to diverse applications from chemical graph
theory to network analysis. Different graph energies associated with topological
indices have been introduced and extensively studied in the literature, highlighting
their significance in understanding complex systems. Numerous matrices can be
related to a graph, and their spectrums provide certain helpful information about
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the graph [1, 2, 4, 6, 9–11,18].

In 1953, Alfonso Shimbel [20] introduced the notion of vertex stress for graphs
as a centrality measure. Stress of a vertex v in a graph G is the number of shortest
paths (geodesics) passing through v. This concept has many applications including
the study of biological and social networks. Many stress related concepts in graphs
and topological indices have been defined and studied by several authors [12–17,
19]. A graph G is k-stress regular [3] if str(v) = k for all v ∈ V (G). The stress-sum
index SS(G) [12] of a graph G(V,E) is defined by

SS(G) =
∑

uv∈E(G)

[str(u) + str(v)] .

The second stress index S2(G) [13] of a graph G(V,E) is defined by

S2(G) =
∑

uv∈E(G)

str(u)str(v).

In this paper, we introduce the stress product matrix of a graph G and define the
stress product energy ESP (G) based on its eigenvalues. This new approach extends
the concept of graph energy to incorporate stress-related measures, offering a fresh
perspective on graph invariants. We also establish bounds for ESP (G) in relation
to other graph invariants and explore the correlation between the stress product
energy of molecules with heteroatoms and their respective π-electron energy. This
work aims to deepen our understanding of graph energy and its implications for
molecular and structural analysis.

2. Stress Product Matrix and Energy

The stress product matrix of a graph G with V (G) = {v1, v2, · · · , vn} is defined
as SPM(G) = (xij), where

xij =

{
str (vi) str (vj), if i ̸= j;

0, otherwise .

The stress product polynomial of a graph G is defined as

PSPM(G)(sλ) = |spI − SPM(G)|,

where I is an n× n unit matrix.

All the roots of the equation PSPM(G)(sλ) = 0 are real because the matrix
SPM(G) is real and symmetric. Therefore, these roots can be ordered as sp1 ≥
sp2

≥ · · · ≥ spn
, with sp1

being the largest and spn
being the smallest eigenvalue.

The stress product energy ESP (G) of a graph G is defined by

ESP (G) =

n∑
i=1

|spi
| .
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3. Preliminary results

In this section, we will document the necessary results to support our main
findings in section 4.

Theorem 3.1. Let ci and di, for 1 ≤ i ≤ n, be non-negative real numbers. Then

n∑
i=1

c2i

n∑
i=1

d2i ≤ 1

4

(√
M1M2

m1m2
+

√
m1m2

M1M2

)2( n∑
i=1

cidi

)2

,

where M1 = max1≤i≤n {ci} ;M2 = max1≤i≤n {di} ;m1 = min1≤i≤n {ci} and m2 =
min1≤i≤n {di}.

Theorem 3.2. Let ci and di, for 1 ≤ i ≤ n be positive real numbers. Then

n∑
i=1

c2i

n∑
i=1

d2i −

(
n∑

i=1

cidi

)2

≤ n2

4
(M1M2 −m1m2)

2
,

where M1 = max1≤i≤n {ci} ;M2 = max1≤i≤n {di} ;m1 = min1≤i≤n {ci} and m2 =
min1≤i≤n {di}.

Theorem 3.3. (BPR Inequality) Let ci and di, for1 ≤ i ≤ n be non-negative real
numbers. Then ∣∣∣∣∣n

n∑
i=1

cidi −
n∑

i=1

ci

n∑
i=1

di

∣∣∣∣∣ ≤ α(n)(A− a)(B − b),

where a, b, A and B are real constants, that for each i, 1 ≤ i ≤ n, a ≤ ci ≤ A and
b ≤ di ≤ B. Further, α(n) = n

⌈
n
2

⌉ (
1− 1

n

⌈
n
2

⌉)
.

Theorem 3.4. (Diaz–Metcalf Inequality) If ci and di, 1 ≤ i ≤ n, are nonnegative
real numbers. Then

n∑
i=1

d2i + rR

n∑
i=1

c2i ≤ (r +R)

(
n∑

i=1

cidi

)
,

where r and R are real constants, so that for each i, 1 ≤ i ≤ n, holds rci ≤ di ≤
Rci.

Theorem 3.5. (The Cauchy-Schwarz inequality) If c = (c1, c2, . . . , cn) and d =
(d1, d2, . . . , dn) are real n-vectors, then

(
n∑

i=1

cidi

)2

≤

(
n∑

i=1

c2i

)(
n∑

i=1

d2i

)
.
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4. Bounds for the Stress Product Eigenvalues and Energy

Lemma 4.1. Let sp1
≥ sp2

≥ . . . ≥ spn
be the eigenvalues of the stress product

matrix SPM(G). Then

(i)

n∑
i=1

spi
= 0

(ii)

n∑
i=1

s2pi
= 2

∑
1≤i≤j≤n

(str (vi) str (vj))
2 = 2S

where S =
∑

1≤i<j≤n (str(vi)str(vj))
2
.

Proof. i) The first equality is a direct consequence of SPM(G)ii = 0 for all
1, 2, . . . , n.
ii) We have

n∑
i=1

s2βi
= trace[SPM(G)]2

=

n∑
i=1

n∑
j=1

(str(vi)str(vj))
2

= 2
∑

1≤i<j≤n

(str(vi)str(vj))
2

= 2S.
□

Lemma 4.2. If a, b, c and d are real numbers, then the determinant of the form∣∣∣∣(λ+ a) In×n − aJn×n −cJn×m

−dJm×n (λ+ b) Im×m − bJm×m

∣∣∣∣
= (λ+ a)

n−1
(λ+ b)

m−1
[(λ− (n− 1) a) (λ− (m− 1) b)−mncd].

Theorem 4.3. If Km,n is a complete bipartite graph, then the characteristic poly-
nomial is given by(
sp +

m2(m−1)2

4

)n−1 (
sp +

n2(n−1)2

4

)m−1

×
[(

sp − m2(m−1)2(n−1)
4

)(
sp − n2(n−1)2(m−1)

4

)
− n3(n−1)2

4
m3(m−1)2

4

]
.

Proof. In a complete bipartite graph Km,n, the vertex set V (Km,n) can be par-
titioned into two disjoint sets A = {u1, u2, ..., um} and B = {v1, v2, ..., vn}. The
stress of any vertex v in Km,n is given by

Str(v) =

{
n(n−1)

2 if v ∈ A
m(m−1)

2 if v ∈ B

Using the above and the definition of stress product matrix, we find that SPM(Km,n) =[
m2(m−1)2

4 (−In×n + Jn×n)
n(n−1)

2
m(m−1)

2 Jn×m
n(n−1)

2
m(m−1)

2 Jm×n
n2(n−1)2

4 (−Im×m + Jm×m)

]
,
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where In is the identity matrix and Jn×m is the matrix with all entries as 1. The
characteristic polynomial of the above matrix is given by the following
determinant:∣∣∣∣∣∣∣∣
(
sp +

m2(m−1)2

4

)
In×n − m2(m−1)2

4 Jn×n −n(n−1)
2

m(m−1)
2 Jn×m

−n(n−1)
2

m(m−1)
2 Jm×n

(
sp +

n2(n−1)2

4 Im×m

)
− n2(n−1)2

4 Jm×m

∣∣∣∣∣∣∣∣
Using the Lemma 4.2 in the above, we have the characteristic polynomial =(
sp +

m2(m−1)2

4

)n−1 (
sp +

n2(n−1)2

4

)m−1

×
[(

sp − m2(m−1)2(n−1)
4

)(
sp − n2(n−1)2(m−1)

4

)
− n3(n−1)2

4
m3(m−1)2

4

]
.

□

Theorem 4.4. If Cn is cycle graph, then the characteristic polynomial is given

by


(
sp − (n−1)3(n−3)2

82

)(
sp +

(n−1)2(n−3)2

82

)n−1

if n is odd(
sp − n2(n−1)(n−2)2

82

)(
sp +

n2(n−2)2

82

)n−1

if n is even

Proof. The stress of any vertex v in Cn is given by

Str(v) =

{
(n−1)(n−3)

8 , if n is odd
n(n−2)

8 , if n is even

Using the above and the definition of stress product matrix for n being odd, we
find that

SPM (Cn) =


0 (n−1)2(n−3)2

82
(n−1)2(n−3)2

82 · · · (n−1)2(n−3)2

82
(n−1)2(n−3)2

82 0 (n−1)2(n−3)2

82 · · · (n−1)2(n−3)2

82

...
...

. . .
...

(n−1)2(n−3)2

82
(n−1)2(n−3)2

82
(n−1)2(n−3)2

82 · · · 0

 .

Using the Lemma 4.2 in the above, the characteristic polynomial of the above ma-
trix is given by(
sp − (n−1)3(n−3)2

82

)(
sp +

(n−1)2(n−3)2

82

)n−1

.

Likewise for the case of n being even can be obtained. □

Theorem 4.5. The characteristic polynomial of fan graph Fn on 2n+ 1 vertices
and star graph Sn on n+ 1 vertices are s2n+1

p and sn+1
p respectively.

Proof. In Fn graph, the stress of central vertex is 2n (n− 1) and remaining 2n
vertices have stress 0. Therefore SPM (Fn) = [0](2n+1)×(2n+1)

The characteristic polynomial of the above matrix is given by s2n+1
p .

In Sn graph, the stress of common vertex is n(n−1)
2 and remaining n vertices have

stress 0. Therefore SPM (Sn) = [0](n+1)×(n+1). The characteristic polynomial of

the above matrix is given by sn+1
p . □
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Theorem 4.6. Let G be any graph with n-vertices. Then

sp1 ≤
√

(2S)(n− 1)

n
.

Proof. Setting ci = 1, di = spi
, for i = 2, 3, . . . , n in Theorem 3.5, we have(
n∑

i=2

spi

)2

≤ (n− 1)

n∑
i=2

s2pi
. (4.1)

From Lemma 4.1, we find that

n∑
i=2

spi = −sp1 and

n∑
i=2

s2pi
= −s2p1

+ 2S.

Employing the above in (4.1), we obtain

(−sp1
)
2 ≤ (n− 1)

(
2S− s2p1

)
sp1

≤
√

(2S)(n− 1)

n
.

□

Theorem 4.7. Let G be any graph with n vertices. Then

ESP (G) ≤
√

(2S)n.

Proof. Choosing ci = 1, di = |spi |, for i = 2, 3, . . . , n in Theorem 3.5, we get(
n∑

i=1

|spi
|

)2

≤ n

n∑
i=1

s2pi

=⇒ (ESP (G))
2 ≤ n(2S)

=⇒ ESP (G) ≤
√
n(2S).

□

Theorem 4.8. If G is a graph with n vertices and ESP (G) be the stress product
energy of G, then

√
2S ≤ ESP (G).

Proof. By the definition of ESP (G), we have

[ESP (G)]
2
=

(
n∑

i=1

|spi
|

)2

≥
n∑

i=1

|spi
|2 = 2S.

=⇒
√
2S ≤ ESP (G).

□
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Theorem 4.9. Let G be any graph with n-vertices and Φ be the absolute value of
the determinant of the stress product matrix SPM(G). Then√

(2S) + n(n− 1)Φ2/n ≤ ESP (G).

Proof. By the definition of stress product energy, we find that

(ESP (G))
2
=

(
n∑

i=1

|spi
|

)2

=

n∑
i=1

|sλi
|2 + 2

∑
i<j

|spi
||spj

|

= (2S) +
∑
i̸=j

|spi ||spj |.

Since for non-negative numbers, the Arithmetic mean is greater than Geometric
mean, we have

1

n(n− 1)

∑
i ̸=j

|spi
||spj

| ≥

∏
i̸=j

|spi
||spj

|

 1
n(n−1)

=

(
n∏

i=1

|spi |
2(n−1)

) 1
n(n−1)

=

n∏
i=1

|spi |
2/n

= Φ2/n.

Therefore, ∑
i ̸=j

|spi
|
∣∣spj

∣∣ ≥ n(n− 1)Φ
2
n

=⇒ [ESP (G)]
2 ≥ 2S+ n(n− 1)Φ2/n

=⇒ ESP (G) ≥
√

2S+ n(n− 1)Φ2/n.

Equality in AM-GM inequality is attained if and only if all spi
; i = 1, 2, . . . , n are

equal. □

Lemma 4.10. Let c1, c2, . . . , cn be non-negative numbers. Then

n

 1

n

n∑
i=1

ci −

(
n∏

i=1

ci

)1/n
 ≤ n

n∑
i=1

ci−

(
n∑

i=1

√
ci

)2

≤ n(n−1)

 1

n

n∑
i=1

ci −

(
n∏

i=1

ci

)1/n
 .

Theorem 4.11. Let G be a connected graph with n vertices. Then√
(2S) + n(n− 1)Φ2/n ≤

ESP (G) ≤
√

(2S)(n− 1) + nΦ2/n.
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Proof. Let ci = |spi
|2 , i = 1, 2, . . . , n and

V = n

 1

n

n∑
i=1

|spi |
2 −

(
n∏

i=1

|spi |
2

)1/n


= n

 (2S)
n

−

(
n∏

i=1

|spi
|

)2/n


= n

[
(2S)
n

− Φ2/n

]
= (2S)− nΦ2/n.

By Lemma 4.10, we obtain

V ≤ n

n∑
i=1

|spi |
2 −

(
n∑

i=1

|spi |

)2

≤ (n− 1)V.

Upon simplification of the above equation, we find that√
(2S) + n(n− 1)Φ2/n ≤

ESP (G) ≤
√

(2S)(n− 1) + nΦ2/n.

□

Theorem 4.12. Let G be a graph of order n. Then

ESP (G) ≥
√
(2S)n− n2

4
(sp1

− spmin)
2
,

where sp1 = spmax = max1≤i≤n {|spi |} and spmin = min1≤i≤n {|spi |}.

Proof. Suppose sp1 , sp2 , . . . , spn are the eigenvalues of SPM(G). We choose ci = 1
and di = |spi |, which by Theorem 3.2 implies

n∑
i=1

12
n∑

i=1

|spi
|2 −

(
n∑

i=1

|spi
|

)2

≤ n2

4
(sp1

− spmin)
2

i.e., (2S)n− (ESP (G))
2 ≤ n2

4
(sp1 − spmin)

2

=⇒ ESP (G) ≥
√
(2S)n− n2

4
(sp1

− spmin)
2
.

□

Theorem 4.13. Suppose zero is not an eigenvalue of SPM(G), then

ESP (G) ≥
2
√
sp1spmin

√
(2S)n

sp1
+ spmin

,

where sp1 = spmax = max1≤i≤n {|spi |} and spmin = min1≤i≤n {|spi |}.

118



STRESS PRODUCT EIGENVALUES AND ENERGY OF GRAPHS

Proof. Suppose sp1
, sp2

, . . . , spn
are the eigenvalues of SPM(G).

Setting ci = |spi | and di = 1 in Theorem 3.1, we have

n∑
i=1

|spi
|2

n∑
i=1

12 ≤ 1

4

(√
sp1

spmin
+

√
spmin

sp1

)2
(

n∑
i=1

|spi
|

)2

i.e., (2S)n ≤ 1

4

(
(sp1 + spmin)

2

sp1
spmin

)
(ESP (G))

2

=⇒ ESP (G) ≥
2
√
sp1

spmin

√
(2S)n

sp1
+ spmin

.

□

Theorem 4.14. Let G be a graph of order n and sp1
≥ sp2

≥ . . . ≥ spn
be the

non zero eigenvalues of SPM(G). Then

ESP (G) ≥ (2S) + nsp1
spmin

sp1 + spmin
,

where sp1
= spmax = max1≤i≤n {|spi

|} and spmin = min1≤i≤n {|spi
|}.

Proof. Assigning di = |spi | , ci = 1, R = |sp1 | and r = |spmin| in Theorem 3.4, we
get

n∑
i=1

|spi |
2
+ sp1spmin

n∑
i=1

12 ≤ (sp1 + spmin)

n∑
i=1

|spi |

(2S) + nsp1spmin ≤ (sp1 + spmin)ESP (G)

After simplifying and using the definition of ESP (G), we obtain

ESP (G) ≥ (2S) + nsp1spmin

sp1
+ spmin

.

□

Theorem 4.15. Let G be a graph of order n and sp1
≥ sp2

≥ . . . ≥ spn
be the

eigenvalues of SPM(G). Then

ESP (G) ≥
√
(2S)n− α(n) (sp1 − spmin)

2
,

where sp1
= spmax = max1≤i≤n {|spi

|} and spmin = min1≤i≤n {|spi
|} and α(n) =

n
⌈
n
2

⌉ (
1− 1

n

⌈
n
2

⌉)
.

Proof. Setting ci = |spi | = di, A ≤ |spi | ≤ B and a ≤ |spn | ≤ b in Theorem 3.3, we
get
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∣∣∣∣∣∣n
n∑

i=1

|spi
|2 −

(
n∑

i=1

|spi
|

)2
∣∣∣∣∣∣ ≤ α(n) (sp1

− spmin)
2

∣∣∣(2S)n− (ESP (G))
2
∣∣∣ ≤ α(n) (sp1 − spmin)

2

ESP (G) ≥
√
(2S)n− α(n) (sp1 − spmin)

2
.

□

5. Chemical Applicability of ESP (G)

In this section, we perform a computational analysis of the stress product energy
ESP (G) and π-electron energy of heteroatoms. This study explores quadratic and
cubic regression models. Since real-world data can exhibit nonlinear patterns,
flexible approaches are necessary to capture such variations. These models enable
researchers to determine the best fit for their specific data. This section highlights
the chemical relevance of stress product energy in developing quadratic and cubic
regression models for properties such as π-electron energy.
The regression models tested are as follows:
Quadratic equation:

Y = A+B1X1 +B2X
2
1

Cubic equation:

Y = A+B1X2 +B2X
2
2 +B3X

3
2

Here, Y is the dependent variable, A being the regression constant, and Bi (where
i = 1, 2, 3) are the regression coefficients and Xi (where i = 1, 2, 3) are the inde-
pendent variables.

Table 1. Molecules containing hetero atoms with total π-
electron energy and the stress product energy.

Molecule Total π-electron energy ESP (G)
Veny chloride like system 2.23 0
Acrolein like systems 5.76 8
1,1-Dichloro-ethylene like systems 6.96 0
Glyoxal like and 1,2-
Dichloro-ethylene like systems 6.82 8
Butadiene perturbed at C2 5.66 8
Pyrrole like systems 5.23 8
Pyridine like systems 6.69 90
Pyridazine like systems 9.06 90
Pyrimidine like systems 9.10 90
Pyrazine like systems 9.07 90
S-Triazene like systems 9.65 90
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Molecule Total π-electron energy ESP (G)
Aniline like systems 8.19 224.24
O-Phenylene-diamine like systems 12.21 629.21
m-Phenylene-diamine like systems 12.22 585.7
p-Phenylene-diamine like systems 12.21 704.4
Benzaldehyde like systems 11.00 626.142
Quinoline like systems 14.23 2292.83
Iso-quinoline like systems 14.23 2292.83
1-Naphthalein like systems 16.15 3699.47
2-Naphthalein like systems 16.12 4396.37
Acridine like systems 20.56 20093.626
Phenazine like systems 21.62 20093.626
Iso-indole like systems 13.46 734.3
Indole like systems 13.59 734.3
Azobenzene like systems 21.02 24910.36
Benzylidine-aniline-like systems 20.10 24910.36
9,10-Anthraquinoline structures 24.23 33819.071
Cabazole like structures 19.39 6016.893

Table 2. The correlation coefficient r from quadratic and cubic
regression model between stress product energy and π electron
energy

Model Correlation Coefficient r
Quadratic 0.954
Cubic 0.962
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Conclusion. The stress product energy is proposed with potential predictive ca-
pability for π-electron energy in chemical compounds.π-electron energy plays a
crucial role in the stability and reactivity of molecules, particularly in molecules
containing heteroatoms. In this study, we apply regression models to assess the
predictive relationship between stress product energy and π-electron energy.

Acknowledgement. We would also like to thank our reviewers for their valuable
comments.
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