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Abstract. Risk-neutral fuzzy probability measures play a crucial role in evaluating
American fuzzy put option and fuzzy call option pricing models that depend on

the amount of increase or decrease of the equity prices. Volatility and risk-free

interest rate are the two significant parameters that are affecting the financial market
frequently. In 2008, Muzzioli et al [9] and Xcaojian Yu [17] used non-overlapping

triangular/trapezoidal and non-overlapping fuzzy trapezoidal numbers respectively to

describe the same to study American put option model. In this study, we recommend
fuzzy measures involving non-overlapping fuzzy octagonal numbers using which we

demonstrate American Put Fuzzy Option Model (APFOM) by incorporating the

uncertain values to real in the volatile series.

1. Introduction

Cox et al. [4, 5] binomial tree model was a well-known and renowned tree model in
the course of examining option pricing and derivative securities. Muzzioli et al. [12, 11,
10, 13, 14, 15, 9] studied American put option under fuzzy environment by admitting
vagueness only in the jump factors. Xcaojian Yu and Zhaozhang Ren [17] have extended
the model discussed in [9], by accepting fuzziness in both interest rates with no risk
and volatility. Xcaojian Yu et al. [18] have performed empirical research on pricing
American put options on 3 - month Euribor futures based on a fuzzy set. Later, Yoshida
[20, 22, 24, 23, 21] had been taken the effort to investigate the same. Sumarti et al.
[16] studied a dynamic portfolio of American options using a fuzzy binomial method in
2016. Further, several authors worked on a similar situation [19, 2, 3]. For the purpose of
complete disclosure, we review the definitions of linear fuzzy octagonal numbers, α−cut,
arithmetic operations, and their ranking cited from [8] which is essential for further
understanding of the present work.

The article is sequenced as given below:
The introduction of risk-neutral fuzzy probability measures involving non-overlapping
fuzzy octagonal numbers and their characteristics are discussed in the subsequent sections
2 and 3 respectively. In Section 4, a computational procedure is given to estimate the
optimal price of APFOM. The same is validated to substantiate our model cited from
”www.optionistics.com”. Section 5, presents the conclusion.
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2. Literature Review on Linear fuzzy octagonal numbers

For the purpose of complete disclosure, we review the definitions of linear fuzzy octgo-
nal numbers, cut, arithmetic operations and it’s ranking cited from [8] which is essential
for further understanding of the present work.

3. Fuzzy probability measures - non-overlapping fuzzy octagonal numbers

This section introduces the no-arbitrage condition to define fuzzy measures involving
non-overlapping fuzzy octagonal numbers and execute the American put option model in

a fuzzy setup. Let Ũ↑ ≈ (U1,U2,U3,U4,U5,U6,U7,U8; k), D̃↓ ≈ (D1,D2,D3,D4,D5,D6,

D7,D8; k). be the up (rise) and down (fall) fuzzy jump factors and R̃f ≈ (Rf1 ,R
f
2 ,R

f
3 ,R

f
4 ,

Rf5 ,R
f
6 ,R

f
7 ,R

f
8 ; k) be rate of fuzzy interest at free risk of the underlying fuzzy asset re-

spectively (see Figure ??). Then the α− cuts of Ũ↑, D̃↓ and R̃f are given by
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µŨ↑(x)

0

1

U↑1 U
↑
2 U
↑
3 U

↑
4 U↑5 U

↑
6 U
↑
7 U

↑
8

Figure 1. No-arbitrage supposition using non-overlapping fuzzy octagonal numbers
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Ũ↑α =

{
[U↑(α)1,U

↑
(α)1], for α ∈ [0, k]

[U↑(α)2,U
↑
(α)2], for α ∈ (k, 1]

D̃↓α =

{
[D↓(α)1,D

↓
(α)1], for α ∈ [0, k]

[D↓(α)2,D
↓
(α)2], for α ∈ (k, 1] and

R̃fα =

{
[Rf (α)1,R

f
(α)1], for α ∈ [0, k]

[Rf (α)2,R
f
(α)2], for α ∈ (k, 1] where,

U↑(α)1 = U↑1 +
α

k
(U↑2 − U↑1), for α ∈ [0, k] (3.1)

U↑(α)1 = U↑8 −
α

k
(U↑8 − U↑7), for α ∈ [0, k] (3.2)

U↑(α)2 = U↑3 +

(
α− k
1− k

)
(U↑4 − U↑3), for α ∈ (k, 1] (3.3)

U↑(α)2 = U↑6 −
(
α− k
1− k

)
(U↑6 − U↑5), for α ∈ (k, 1] (3.4)

D↑(α)1 = D↑1 +
α

k
(D↑2 −D↑1) for α ∈ [0, k] (3.5)

D↑(α)1 = D↑8 −
α

k
(D↑8 −D↑7) for α ∈ [0, k] (3.6)

D↑(α)2 = D↑3 +

(
α− k
1− k

)
(D↑4 −D↑3) for α ∈ (k, 1] (3.7)

D↑(α)2 = D↑6 −
(
α− k
1− k

)
(D↑6 −D↑5) for α ∈ (k, 1] (3.8)

Rf (α)1 = Rf 1 +
α

k
(Rf 2 −Rf 1), for α ∈ [0, k] (3.9)

Rf (α)1 = Rf 8 −
α

k
(Rf 8 −Rf 7), for α ∈ [0, k] (3.10)

Rf (α)2 = Rf 3 +

(
α− k
1− k

)
(Rf 4 −Rf 3), for α ∈ (k, 1] (3.11)

Rf (α)2 = Rf 6 −
(
α− k
1− k

)
(Rf 6 −Rf 5), for α ∈ (k, 1] (3.12)
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PU↑(α) and PD↓(α) respectively represents the α−cuts of the two bounds of the intervals

of risk-neutral fuzzy probability measures P̃U↑ and P̃D↓ .

PU↑(α) =

{
[P(1)

U↑ (α),P(1)

U↑ (α)], for α ∈ [0, k]

[p
(2)

U↑ (α),P(2)

U↑ (α)], for α ∈ (k, 1]
(3.13)

PD↓(α) =

{
[P(1)

D↓(α),P(1)

D↓(α)], for α ∈ [0, k]

[P(2)

D↓(α),P(2)

D↓(α)], for α ∈ (k, 1]
and (3.14)

Using equations given from (3.1) to (3.14), we have

P(1)

U↑ (α) =
(1 + (Rf 1 + α

k (Rf 2 −Rf 1))−D↓8 + α
k (D↓8 −D↓7)

(U↑8 −D↓8)− α
k (U↑8 − U↑7 −D↓8 +D↓7)

, α ∈ [0, k] (3.15)

P(1)

U↑ (α) =
(1 + (Rf 8 − α

k (Rf 8 −Rf 7))−D↓1 − α
k (D↓2 −D↓1)

(U↑1 −D↓1) + α
k (U↑2 − U↑1 −D↓2 +D↓1)

, α ∈ [0, k] (3.16)

P(2)

U↑ (α) =
(1 + (Rf 3 + (α−k1−k )(Rf 4 −Rf 3))−D↓6 + (α−k1−k )(D↓6 −D↓5)

(U↑6 −D↓6)− (α−k1−k )(U↑6 − U↑5 −D↓6 +D↓5)
, α ∈ (k, 1](3.17)

P(2)

U↑ (α) =
(1 + (Rf 6 − (α−k1−k )(Rf 6 −Rf 5))−D↓3 − (α−k1−k )(D↓4 −D↓3)

(U↑3 −D↓3) + (α−k1−k )(U↑4 − U↑3 −D↓4 +D↓3)
, α ∈ (k, 1](3.18)

P(1)

D↓(α) =
U↑1 − (1 + (Rf 8 − α

k (Rf 8 −Rf 7)) + α
k (U↑2 − U↑1)

(U↑1 −D↓1) + α
k (U↑2 − U↑1 −D↓2 +D↓1)

, α ∈ [0, k] (3.19)

P(1)

D↓(α) =
U↑8 − (1 + (Rf 1 + α

k (Rf 2 −Rf 1))− α
k (U↑8 − U↑7)

(U↑8 −D↓8)− α
k (U↑8 − U↑7 −D↓8 +D↓7)

, α ∈ [0, k] (3.20)

P(2)

D↓ =
U↑3 − (1 + (Rf 6 − (α−k1−k )(Rf 6 −Rf 5)) + (α−k1−k )(U↑4 − U↑3)

(U↑3 −D↓3) + (α−k1−k )(U↑4 − U↑3 −D↓4 +D↓3)
, α ∈ (k, 1] (3.21)

P(2)

D↓(α) =
U↑6 − (1 + (Rf 3 + (α−k1−k )(Rf 4 −Rf 3))− (α−k1−k )(U↑6 − U↑5)

(U↑6 −D↓6)− (α−k1−k )(U↑6 − U↑5 −D↓6 +D↓5)
, α ∈ (k, 1](3.22)

Taking α = 0, α = k in equations (3.15), (3.16), (3.17), (3.18) and α = k, α = 1 in (3.19),
(3.20), (3.21), (3.22), the two exterior points and the interior points of the risk-neutral

fuzzy probability measures that depend on the trends of Ũ↑, D̃↓ and R̃f are defined by

P̃U↑ ≈
(

1 +R1 −D↓8
U↑8 −D↓8

,
1 +R2 −D↓7
U↑7 −D↓7

,
1 +R3 −D↓6
U↑6 −D↓6

,
1 +R4 −D↓5
U↑5 −D↓5

, (3.23)

1 +R5 −D↓4
U↑4 −D↓4

,
1 +R6 −D↓3
U↑3 −D↓3

,
1 +R7 −D↓2
U↑2 −D↓2

,
1 +R8 −D↓1
U↑1 −D↓1

; k

)
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P̃D↓ ≈
(
U↑1 − (1 +R8)

U↑1 −D↓1
,
U↑2 − (1 +R7)

U↑2 −D↓2
,
U↑3 − (1 +R6)

U↑3 −D↓3
,
U↑4 − (1 +R5)

U↑4 −D↓4
,(3.24)

U↑5 − (1 +R4)

U↑5 −D↓5
,
U↑6 − (1 +R3)

U↑6 −D↓6
,
U↑7 − (1 +R2)

U↑7 −D↓7
,
U↑8 − (1 +R1)

U↑8 −D↓8
; k

)
From this, we analyze that dualistic circumstances are true.

4. Evaluation Method of APFOM on fuzzy future contract

We, now examine how risk-neutral probability measures behave when it is represented
by non-overlapping fuzzy octagonal numbers using the presumptions considered here.
Also, we record a computational procedure to obtain optimal prices of fuzzy put options
based on the American style.
Characteristics of risk-neutral fuzzy probabilities using non-overlapping fuzzy
octagonal numbers:
Here, we assume that the following no arbitrage inequality holds: D↓i(1 +Rf i)U↑i and
0 PU↑

i
,PD↓

i
1, i = 1, 2, . . . , 8

P(1)

U↑ (α) =
(1 +Rf 1)−D↓8 + α

k (D↓8 −D↓7)

(U↑8 −D↓8)− α
k (U↑8 − U↑7 −D↓8 +D↓7)

for α ∈ [0, k]

=
N1

D1

P(1)

U↑
′(α) =

(D1 −N1)(D↓8 −D↓7) +N2(U↑8 − U↑7)

kD12

Also, P(1)

U↑
′′(α) = P(1)

U↑
′(α)2

(U↑8 − U↑7 −D↓8 +D↓7)

kD1

Similarly, we have

P(1)

U↑ (α) =
(1 +Rf 8)−D↓1 − α

k (D↓2 −D↓1)

(U↑1 −D↓1) + α
k (U↑2 − U↑1 −D↓2 +D↓1)

=
N2

D2

P(1)

U
′(α) = −

(D2 −N2)(D↓2 −D↓1)−N2(U↑2 − U↑1)

kD2
2

P(1)

U↑
′′(α) = −P(1)

U↑
′(α)2

(U↑2 − U↑1 −D↓2 +D↓1)

kD2

P(1)

D↓(α) =
U↑1 − (1 +Rf 8) + α

k (U↑2 − U↑1)(U↑1 −D↓1) + α
k (U↑2 − U↑1 −D↓2 +D↓1)

=
N5

D5

P(1)

D↓
′(α) =

(D5 −N5)(U↑2 − U↑1) +N3(D↓2 −D↓1)

kD2
5

5
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Also, P(1)

D↓
′′(α) = −P(1)

D↓
′(α)2

(U↑2 − U↑1 −D↓2 +D↓1)

kD5

In a similar manner,

P(1)

D↓(α) =
U↑8 − (1 +Rf 1)− α

k (U↑8 − U7)

(U↑8 −D↓8)− α
k (U↑8 − U↑7 −D↓8 +D↓7)

=
N6

D6

P(1)

D↓
′(α) = −

(D6 −N6)(U↑8 − U↑7)−N4(D↓8 −D↓7)

kD2
6

Also, P(1)

D↓
′′(α) = −P(1)

D↓
′(α)2

(U↑8 − U↑7 −D↓8 +D↓7)

kD6

P(2)

U↑ (α) =
(1 +Rf 3)−D↓6 + α

k (D↓6 −D↓5)

(U↑6 −D↓6)− α
k (U↑6 − U↑5 −D↓6 +D↓5)

for α ∈ (k, 1]

=
N1

D1

P(2)
U
′(α) =

(D1 −N1)(D↓6 −D↓5) +N2(U↑6 − U↑5)

kD2
1

Also, P(2)

U↑
′′(α) = P(1)

U↑
′(α)2

(U↑6 − U↑5 −D↓6 +D↓5)

kD1

P(2)

U (α) =
(1 +Rf 6)−D↓3 − α

k (D↓4 −D↓3)

(U↑3 −D↓3) + α
k (U↑4 − U↑3 −D↓4 +D↓3)

=
N2

D2

P(2)

U↑
′(α) = −

(D2 −N2)(D↓4 −D↓3)−N2(U↑4 − U↑3)

kD2
2

P(2)

U↑
′′(α) = −P(2)

U↑
′(α)2

(U↑4 − U↑3 −D↓4 +D↓3)

kD2

Now,

P(2)

D↓(α) =
U↑3 − (1 +Rf 6) + (α−k1−k )(U↑4 − U↑3)

(U↑3 −D↓3) + (α−k1−k )(U↑4 − U↑3 −D↓4 +D↓3)

=
N7

D7

P(2)

D↓
′(α) =

(D7 −N7)(U↑4 − U↑3) +N7(D↓4 −D↓3)

(1− k)D2
7

P(2)

D↓
′′(α) = P(2)

D↓
′(α)2

(U↑4 − U↑3 −D↓4 +D↓3)

(1− k)D7

6
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In line with the above,

P(2)

D (α) =
U↑6 − (1 +Rf 3)− (α−k1−k )(U↑6 − U↑5)

(U↑6 −D↓6)− (α−k1−k )(U↑6 − U↑5 −D↓6 +D↓5)

=
N8

D8

P(2)

d
′(α) = −

(D8 −N8)(U↑6 − U↑5)−N8(D↓6 −D↓5)

(1− k)D2
8

P(2)

D↓
′′(α) = −P(2)

D↓
′(α)2

(U↑6 − U↑5 −D↓6 +D↓5)

(1− k)D8

We realize that the second derivative of the risk-neutral probabilities with respect to
α is positive and negative for both left and right bounds respectively. Further, if the
difference in up jump factors is equal to the difference in down jump factors, then the
same is linear in α. Also, the left and right bounds of the non-overlapping octagonal fuzzy
number that characterize the fuzzy risk-neutral probabilities are convex and concave
respectively. In case, if α = 1, these bounds will converge at one particular point. As a
result of this, the market is complete and a unique risk-neutral fuzzy probability measure
will exist.

Definition 4.1. Let the fuzzy future contract be expired at a maturity period, T . Then,

uncertain future reward at time t is F̃t,i defined as,

F̃t,i ≈ (1̃ + R̃f )T−tS̃t,i, i = 0, 1, . . . , t and t = 0, 1, 2, . . . , T (4.1)

here,

S̃t,i ≈ S̃0(Ū↑)(D̄↓t−i) (4.2)

is the fuzzy stock price. During the expiration date of the contract at t = T , fuzzy future

price F̃T,i coincides with the fuzzy stock price S̃T,i.

Definition 4.2. The snell envelope of the American fuzzy pay off process (p̃At )t∈T where

p̃At (F̃t,i) ≈ K̃ − F̃t,i, t = 0, 1, 2, . . . , T, i = 0, 1, 2, . . . , t is an Mt− adapted American

fuzzy put price process (ṼAt )t∈T defined by

ṼAT (F̃T,i) ≈ max
{
p̃AT (F̃T,i), 0̃

}
and

ṼAt (F̃t,i) ≈ max

{
p̃At (F̃t,i),

1̃

1̃ + R̃f
Ẽt(ṼAt+1(F̃t+1,i))

}

where Ẽt(ṼAt+1(F̃t+1,i)) ≈ (P̃U ṼAt+1(F̃t+1,i) + P̃DṼAt+1(F̃t+1,i)) for i = 0, 1, . . . , t, t =
T − 1, T − 2, . . . 0.

7
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5. Aim

To obtain APFOM prices using non-overlapping fuzzy octagonal numbers.
Design:
Calculate the fuzzy jump factors

U↑1 = eσ1

√
∆t, U↑2 = eσ2

√
∆t, U↑3 = eσ3

√
∆t, U↑4 = eσ4

√
∆t, U↑5 = eσ5

√
∆t,

U↑6 = eσ6

√
∆t, U↑7 = eσ7

√
∆t, U↑8 = eσ8

√
∆t, where ∆t = T/n and

D↓1 = 1
U↑

8
, D↓2 = 1

U↑
7
, D↓3 = 1

U↑
6
, D↓4 = 1

U↑
5
, D5 = 1

U↑
4
,

D↓6 = 1
U↑

3
,D↓7 = 1

U↑
2
,D↓8 = 1

U↑
1
.

Compute the fuzzy stock prices using equation (4.2).

Determine F̃t for the given fuzzy stock prices using equation (4.1).
Calculate the risk-neutral fuzzy probabilities using equations (3.23) and (3.24).
Obtain American put fuzzy option prices using Definition 4.2.

6. Results and Discussions

We use the following Microsoft stock options data (see Table 1) recorded from option-
istics website on 04/01/2020.We develop (MATLAB) programs for the computational
procedures discussed in this paper
The one-period interest rate is 1.99. Expiration date T= 29/360.

Risk-free fuzzy interest rate is R̃f ≈ [1.89, 1.92, 1.94, 1.99, 2.02, 2.04, 2.07, 2.09].
Fuzzy volatility σ̃ ≈ (0.206, 0.209, 0.212, 0.217, 0.220, 0.223, 0.226, 0.228).
Consider t = 2, the number of steps in a fuzzy binomial tree.

MSFT Specifications
Spot price 87.11
Fixed price 88.00

IV 0.217
Maturity Date 2 Feb18
Option style Put

ROI 1.99

Table 1. Setting of the study - Option Spread

By step (1), the fuzzy jump factors are calculated as

Ũ↑ ≈ [1.04221, 1.04284, 1.04347, 1.04451, 1.04514, 1.04577, 1.04640, 1.04682]

D̃↓ ≈ [0.95527, 0.95566, 0.95623, 0.95681, 0.95739, 0.95834, 0.95892, 0.95950].

By step (2), we get the following fuzzy stock prices (see Figure 2):

By using step (3), we obtain fuzzy future prices as shown below: (see Figure 3)

F̃0 ≈ (87.2427, 87.2448, 87.2462, 87.2497, 87.2518, 87.2532, 87.2553, 87.2567)

F̃U↑

1 ≈ (90.8560, 90.9121, 90.9677, 91.0602, 91.1162, 91.1719, 91.2279, 91.2653)

F̃D↓

1 ≈ (83.2769, 83.3119, 83.3623, 83.4145, 83.4661, 83.5496, 83.6011, 83.6524)

8
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S̃0

S̃D↓
1

S̃U↑
1

S̃DD↓
2

S̃U↑D↓
2

S̃UU↑
2

87.11

(83.2136,83.2475,83.2972,83.3477,83.3982,83.4801,83.5315,83.5820)

(90.7869,90.8418,90.8967,90.9873,91.0421,91.0970,,91.1519,91.1885)

(79.4915,79.5563,79.6513,79.7479,79.8446,80.0032,80.1000,80.1969)

(86.7260,86.8139,86.9182,87.0576,87.1628,87.3019,87.4074,87.4954)

(94.6190,94.7335,94.8480,95.0371,95.1517,95.2665,95.3813,95.4579)

Figure 2. Fuzzy binary share prices tree

F̃UU↑

2 ≈ (94.6190, 94.7335, 94.8480, 95.0371, 95.1517, 95.2665, 95.3813, 95.4579)

F̃U↑D↓

2 ≈ (86.7260, 86.8139, 86.9182, 87.0576, 87.1628, 87.3019, 87.4074, 87.4954)

F̃DD↓

2 ≈ (79.4915, 79.5563, 79.6513, 79.7479, 79.8446, 80.0032, 80.1000, 80.1969)

F̃0

F̃D↓
1

F̃U↑
1

F̃DD↓
2

F̃U↑D↓
2

F̃UU↑
2

87.2427,87.2448,87.2462,87.2497,87.2518,87.2 532,87.2553,87.2567

(83.2769,83.3119,83.3623,83.4145,83.4661,83.5496,83.6011,83.6524)

(90.8560,90.9121,90.9677,91.0602,91.1162,91.1719,91.2279,91.2653)

(79.4915,79.5563,79.6513,79.7479,79.8446,80.0032,80.1000,80.1969)

(86.7260,86.8139,86.9182,87.0576,87.1628,87.3019,87.4074,87.4954)

(94.6190,94.7335,94.8480,95.0371,95.1517,95.2665,95.3813,95.4579)

Figure 3. Fuzzy binary future prices tree

By step (4), we estimate risk-neutral fuzzy probabilities

P̃U↑ ≈ [0.4725, 0.4784, 0.4854, 0.4947, 0.5018, 0.5111, 0.5182, 0.5242]

P̃↓D ≈ [0.4758, 0.4818, 0.4889, 0.4982, 0.5053, 0.5146, 0.5216, 0.5275]
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By step (5), we evaluate the American put fuzzy option prices as shown below:

ṼA2 (F̃UU
↑

2 ) ≈max{K̃ − F̃UU
↑

2 , 0̃} ≈ (0, 0, 0, 0, 0, 0, 0, 0)

ṼA2 (F̃U
↑D↓

2 ) ≈max{K̃ − F̃U
↑D↓

2 , 0̃}
≈(0.5046, 0.5926, 0.6981, 0.8372, 0.9424, 1.0818, 1.1861, 1.274)

ṼA2 (F̃DD
↓

2 ) ≈max{K̃ − F̃DD
↓

2 , 0̃}
≈(7.8031, 7.9, 7.9968, 8.1554, 8.2521, 8.3487, 8.4437, 8.5085)

ṼA1 (F̃U
↑

1 ) ≈max

{
K̃ − F̃U1 ,

1̃

(1̃ + R̃f )
(P̃U↑ ṼA2 (F̃UU

↑

2 ) + P̃D↓ ṼA2 (F̃U
↑D↓

2 ))

}
≈(0.2399, 0.2853, 0.3410, 0.4168, 0.4758, 0.5563, 0.6182, 0.6715)

ṼA1 (F̃D
↓

1 ) ≈max

{
K̃ − F̃D

↓

1 ,
1̃

(1̃ + R̃f )
(P̃U↑ ṼA2 (F̃U

↑D↓

2 ) + P̃D↓ ṼA2 (F̃DD
↓

2 ))

}
≈(4.3476, 4.3989, 4.4504, 4.5339, 4.6390, 4.8454, 5.0150, 5.1521)

ṼA0 (F̃0) ≈max

{
K̃ − F̃0,

1̃

(1̃ + R̃f )
(P̃U↑ ṼA1 (F̃U

↑

1 ) + P̃D↓ ṼA1 (F̃D
↓

1 ))

}
≈(2.1801, 2.2540, 2.3394, 2.4630, 2.5807, 2.7756, 2.9339, 3.0674)

Defuzzification: Taking k = 0.3,, we obtain the defuzzified fuzzy future prices and
American put fuzzy option prices as follows:

Moct(F̃UU
↑

2 ) =
1

4
{114.05751 + 266.21231} = 95.0675

Moct(F̃U
↑D↓

2 ) =
1

4
{104.53281 + 243.90835} = 87.1103

Moct(F̃DD
↓

2 ) =
1

4
{95.80341 + 233.4729} = 79.8191

Moct(F̃U
↑

1 ) =
1

4
{109.27839 + 255.0212} = 91.0749

Moct(F̃D
↓

1 ) =
1

4
{100.15269 + 233.65475} = 83.4519

Moct(F̃0) =
1

4
{104.69985 + 244.30063} = 87.2501

Moct(ṼA2 (F̃UU↑

2 )) = 0;Moct(ṼA2 (F̃U↑D↓

2 )) = 0.8897;Moct(ṼA2 (F̃DD↓

2 )) = 8.1809;

Moct(̃A1 (F̃U↑

1 )) = 0.4494;Moct(ṼA1 (F̃D↓

1 )) = 4.6505;Moct(ṼA0 (F̃0)) = 2.5604.

The fuzzy optimal expected prices at the nodes U↑D↓, DD↓ and D↓ are as follows:
(85.452, 85.6278, 85.8364, 86.1152, 86.3256, 86.6038, 86.8148, 86.9908; )
(70.983, 71.1126, 71.3026, 71.4958, 71.6892, 72.0064, 72.2, 72.3938);
(78.1248, 78.2969, 78.5169, 78.7755, 78.9322, 79.0992, 79.2022, 79.3048).
The corresponding crisp optimal expected prices and optimal exercise time of APFOM
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involving non-overlapping octagonal and non-overlapping fuzzy trapezoidal numbers dur-
ing the nodes U↑D↓, DD↓ and D↓ are represented in Tables 2 and 3 respectively.

Nodal points Optimal - Exercise Time - Expected reward

UU↑ Not exercise
U↑D↓ exercise 86.2206

DD↓ exercise 71.6382
D↓ exercise 78.8014

Time Period Initial Holding Maturity

Table 2. Optimal expected price using non-overlapping fuzzy octago-
nal numbers

Remark 6.1. When the American put fuzzy option problem is solved by using non-
overlapping fuzzy trapezoidal numbers, we obtain the following fuzzy optimal expected
prices
(85.8364, 86.1152, 86.3256, 86.6038);
(71.3026, 71.4958, 71.6892, 72.0064);
(78.5169, 78.7755, 78.9322, 79.0992).

The corresponding crisp optimal expected prices at the nodes UD, DD and D are

Nodes Optimal - Exercise Time - Expected price
UU Not exercise
UD exercise 86.2203
DD exercise 71.6235
D exercise 78.8310

time Current Retention Expiry

Table 3. Optimal expected price using non-overlapping fuzzy trape-
zoidal numbers

86.2203; 71.6235; 78.8310. As the future price of the stock is likely to go up during
the node UD at time t = 2, investor of the option can wait at the node D at time
t = 1 and exercise the option during expiration. Thus, the option owner can get the
optimal expected price involving non-overlapping fuzzy octagonal numbers than using
non-overlapping fuzzy trapezoidal numbers.

7. Conclusion

We have modeled the jump factors, volatility parameter, and risk-free interest rate
using non-overlapping fuzzy octagonal numbers to validate APFOM. From this, we have
realized that the same yields optimal results.

Acknowledgment. We thank the researchers at the Presidency University and Vellore
Institute of Technology for providing their guidance in the completion of this work.

11



K. MEENAKSHI, S. SATHISH, AND PRABAKARAN N

References

1. Basirzadeh, H. An approach for solving fuzzy transportation problem. Applied Mathematical Sci-
ences. 5, 1549-1566 (2011)

2. Buckley, J. The fuzzy mathematics of finance. Fuzzy Sets And Systems. 21, 257-273 (1987)

3. Buckley, J. & Eslami, E. Pricing options, forwards and futures using fuzzy set theory. Fuzzy Engi-
neering Economics With Applications. pp. 339-357 (2008)

4. Cox, J., Ross, S. & Rubinstein, M. Option pricing: A simplified approach. Journal Of Financial

Economics. 7, 229-263 (1979)
5. Cox, J. & Ross, S. The valuation of options for alternative stochastic processes. Journal Of Financial

Economics. 3, 145-166 (1976)
6. Dhanalakshmi, V. & Kennedy, F. A Computational Method for Minimum of Octagonal Fuzzy Num-

bers and its Application to Decision making. Journal Of Combinatorics, Information & System

Sciences. 41, 181 (2016)
7. Kaufmann, A. & Gupta, M. Fuzzy mathematical models in engineering and management science.

(Elsevier Science Inc.,1988)

8. Malini, S. & Kennedy, F. An approach for solving fuzzy transportation problem using octagonal
fuzzy numbers. Applied Mathematical Sciences. 7, 2661-2673 (2013)

9. Muzzioli, S. & Reynaerts, H. American option pricing with imprecise risk-neutral probabilities.

International Journal Of Approximate Reasoning. 49, 140-147 (2008)
10. Muzzioli, S. & Torricelli, C. Combining the theory of evidence with fuzzy sets for binomial option

pricing. (Universit di Modena e Reggio Emilia,2000)

11. Muzzioli, S., Torricelli, C. & Others Pricing options on a vague asset. Proceedings DSI’99 Athens,
Integrating Technology And Human Decisions: Global Bridges Into The 21st Century. 1 pp. 546-548

(1999)
12. Muzzioli, S., Torricelli, C. & Others A model for pricing an option with a fuzzy payoff. (UNIVER-

SITA’DEGLI STUDI DI MODENA E REGGIO EMILIA,1999)

13. Muzzioli, S. & Torricelli, C. A multiperiod binomial model for pricing options in a vague world.
Journal Of Economic Dynamics And Control. 28, 861-887 (2004)

14. Muzzioli, S. & Reynaerts, H. Fuzzy linear systems of the form A1x+ b1= A2x+ b2. Fuzzy Sets And

Systems. 157, 939-951 (2006)
15. Muzzioli, S. & Reynaerts, H. The solution of fuzzy linear systems by non-linear programming: a

financial application. European Journal Of Operational Research. 177, 1218-1231 (2007)

16. Sumarti, N. & Nadya, P. A dynamic portfolio of American option using fuzzy binomial method.
Journal Of Innovative Technology And Education. 3, 85-92 (2016)

17. Yu, X. & Ren, Z. The Valuation of American Put Option Based on Fuzzy Techniques. 2008 Inter-

national Conference On Computer Science And Software Engineering. 3 pp. 750-753 (2008)
18. Yu, X. & Fan, M. A fuzzy set approach on pricing american put options on Euribor futures. 2008 3rd

International Conference On Intelligent System And Knowledge Engineering. 1 pp. 435-439 (2008)

19. Yu, S., Li, M., Huarng, K., Chen, T. & Chen, C. Model construction of option pricing based on
fuzzy theory. Journal Of Marine Science And Technology. 19, 2 (2011)

20. Yoshida, Y. Option pricing models for fuzzy decision making in financial engineering. 10th IEEE
International Conference On Fuzzy Systems.(Cat. No. 01CH37297). 2 pp. 960-963 (2001)

21. Tanino, T., Tanaka, T., Inuiguchi, M. & Yoshida, Y. A discrete-time European options model under
uncertainty in financial engineering. Multi-Objective Programming And Goal Programming: Theory
And Applications. pp. 415-420 (2003)

22. Yoshida, Y. The valuation of European options in uncertain environment. European Journal Of

Operational Research. 145, 221-229 (2003)
23. Yoshida, Y., Yasuda, M., Nakagami, J. & Kurano, M. A new evaluation of mean value for fuzzy

numbers and its application to American put option under uncertainty. Fuzzy Sets And Systems.
157, 2614-2626 (2006)

24. Yoshida, Y., Yasuda, M., Nakagami, J. & Kurano, M. A discrete-time American put option model

with fuzziness of stock prices. Fuzzy Optimization And Decision Making. 4 pp. 191-207 (2005)

12



OPTIMUM INVESTMENT STRATEGY

Department of Mathematics, School of Engineering, Presidency University, Bengaluru,

Karnataka, India.

E-mail address: meenakshivinodkumar@gmail.com

Department of Mathematics, School of Engineering, Presidency University, Bengaluru,

Karnataka, India.
E-mail address: sathish.s@presidencyuniversity.in

School of Computer Science and Engineering, Vellore Institute of Technology, Vellore,

632014, Tamilnadu, India
E-mail address: dhoni.praba@gmail.com

13


