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Abstract. This study investigates the behavior of incompressible flow over

a permeable stretched sheet, considering the effects of viscous dissipation and

Joule heating in a constant two-dimensional electrically conducting, thermally
radiant Williamson Nanofluid. Employing suitable transformation equations

reduces the governing partial differential equations to a set of nonlinear ordi-

nary differential equations. These equations are subsequently solved numer-
ically using the standard fourth-order Runge-Kutta method in conjunction

with the shooting technique. The results are presented graphically, illustrat-

ing the flow, temperature, and nanoparticle volume fraction profiles. The
research examines how various physical characteristics influence heat and

mass transfer rates, including temperature, velocity, skin friction coefficient,
and nanoparticle volume percentage.

1. Introduction

Williamson nanofluid refers to a type of nanofluid that behaves according to
Williamson fluid model, which describes non-Newtonian fluid behavior. Non-
Newtonian fluids possess viscosities that vary with shear stress or strain rate, in
contrast to Newtonian fluids (such as water or air), which maintain a constant vis-
cosity. The Williamson model describes fluids that demonstrate shear-thinning
behavior, indicating that their viscosity decreases as the shear rate increases.
This is often encountered in polymers, biological fluids, and certain industrial
fluids. Nanofluids are fluids containing nanoscale particles (nanoparticles), which
can enhance thermal conductivity, electrical conductivity, or other properties of
the base fluid. These particles can be metals, oxides, or carbon-based materi-
als. A Williamson nanofluid combines the shear-thinning characteristics of the
Williamson model with enhanced thermal properties of nanofluids. These fluids
are often used in engineering and heat transfer applications, such as cooling sys-
tems, thermal management, and energy storage. Viscous dissipation refers to the
process by which mechanical energy is converted into heat due to the action of
viscosity in a fluid. It occurs when a fluid flows and experiences internal friction
between its layers, which leads to the transformation of kinetic energy into ther-
mal energy. This phenomenon is important in many areas of fluid dynamics and
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heat transfer, particularly in high-viscosity fluids or under extreme shear condi-
tions. Choi[1] described enhancing thermal conductivity of fluids with nanoparti-
cles. Sbragaglia and Prosperetti[2] studied nature of effective velocity boundary
condition for liquid flow over a plane boundary on which small free-slip islands
are randomly distributed. The problem of laminar fluid flow resulting from the
stretching of a flat surface in a nanofluid has been investigated numerically first
time by Khan and Pop[3]. In the presence of nanoparticle fractions and on con-
sidering the dynamic effects including the Brownian motion and thermophoresis,
the developments of the second order slip velocity on the boundary layer flow and
heat transfer over a stretching surface is presented by Emad[4]. Radiation and
chemical reaction effects on the steady boundary layer flow of MHD Williamson
fluid through porous medium toward a horizontal linearly stretching sheet in the
presence of nanoparticles are investigated numerically by Krishnamurthy et al.[5].
The ”blade coating analysis of a Williamson fluid” likely involves studying the
behavior of a non-Newtonian fluid (specifically a Williamson fluid) during the
blade coating process, which is commonly used in industrial applications like print-
ing, coating, and film manufacturing explained by Siddique et al.[6].Krishna and
Chamkha [7]involved in a detailed analysis of heat and mass transfer in a mag-
netohydrodynamic (MHD) flow of a second-grade fluid through a porous medium
over a semi-infinite vertical stretching sheet. Tesfaye Kebede et al.[8] investi-
gated the analytic approximation to the heat and mass transfer characteristics of
a two-dimensional time-dependent flow of Williamson nanofluids over a permeable
stretching sheet embedded in a porous medium has been presented by considering
the effects of magnetic field, thermal radiation, and chemical reaction. The MHD
boundary layer flow of a nanofluid past a stretching/shrinking sheet with hydro-
dynamic, thermal, and solutal slip boundary conditions was studied by Mansur
and Ishak [9]. Ali et al. [10] elaborated the natural convection of a magnetohydro-
dynamic nanofluid in an enclosure under the effects of thermal radiation and the
shape factor of nanoparticles was analyzed numerically using the control-volume-
based finite element method. Magnetic nanofluid natural convection in the porous
enclosure considering Brownian motion is studied numerically using CVFEM by
Dogonchi et al.[11]. Sejunti and Khaleque [12]reported the flow and heat transfer
of ferrofluids over a flat plate with slip conditions and radiation using the Keller-
Box method. Hall and ion slip effects on magnetohydrodynamic free convective
rotating flow of nanofluids in a porous medium past a moving vertical semi-infinite
flat plate are investigated by Veer Krishna and Chakha [13]. The slip boundary
condition for nanoflows is crucial aspect of nanohydrodynamics theory and sig-
nificantly influences design and fabrication of nanofluidic devices. Ruifei Wang et
al.[14] In this review, focused on the slip boundary conditions for nanoconfined liq-
uid flows.velocity slip boundary condition has significant implications for the flow
and heat transfer characteristics of non-Newtonian ferrofluids over a stretching
sheet. It alters the momentum transfer, modifies the shear stress, and influences
the behavior of magnetic particles within the fluid examined by Hussan Zeb et
al.[15]. The combined effect of hybrid nanoparticle and velocity slip Boundary
Conditions on the nonlinear problem of MHD Jeffery–Hamel flow described by
Mohamed Kezzar et al.[16]. Dawood et al.[17] analyzed the pulsatile nano-blood

2



flow through a sinusoidal wavy channel, emphasizing the significance of diverse
influences in the modelling. Hui WU et al.[18] concentrated on the rarefaction
effect coupled with the roughness effect on surface properties to replace the slip
boundary condition at the smooth surface with an effective boundary condition
modified by roughness. Azad Hussain [19] presented report on Transportation of
thermal and velocity slip factors on three-dimensional dual phase nanomaterials
liquid flow towards an exponentially stretchable surface. Mathematical study of
Slip conditions on electrically conducting nanofluid over a vertically stretching
sheet is presented with effects of viscous dissipation, thermal radiation and Soret
and Dufor by Al- Zubaidi et al. [20]. Lavanya et al. [21] the study of multiple
slip effects on the time independent MHD flow of a UCM fluid over an elongating
surface with chemical reaction. Non-Newtonian nanofluid under magnetohydro-
dynamics (MHD) and radiation effects through slender cylinder elaborated by
Saquib Ul Zaman et al. [22]. Siva Shanakari et al.[23] investigated on the drift of
an MHD Williamson liquid past an extended sheet under the influence of Joule
heating. Vinod Kumar Reddy et al.[24] explored the effect of activation energy on
the MHD radiative Williamson nanofluid flow across a wedge using heat generation
and binary chemical reactivity. In The present paper we investigate the behavior
of incompressible flow over a permeable stretched sheet, considering the effects of
viscous dissipation and Joule heating in a constant two-dimensional electrically
conducting, thermally radiant Williamson Nanofluid. Employing suitable trans-
formation equations reduces the governing partial differential equations to a set of
nonlinear ordinary differential equations. These equations are subsequently solved
numerically using the standard fourth-order Runge-Kutta method in conjunction
with the shooting technique. The results are presented graphically, illustrating the
flow, temperature, and nanoparticle volume fraction profiles. The research exam-
ines how various physical characteristics influence heat and mass transfer rates,
including temperature, velocity, skin friction coefficient, and nanoparticle volume
percentage. Findings indicates that velocity ratio parameter decreases the mass
transfer rate while increasing the skin friction coefficient, velocity profile, and heat
transfer rate. In contrast, increasing mass injection enhances both temperature
profiles and velocity. In contrast, a rise in mass suction parameter reduces tem-
perature and velocity boundary layer thickness, albeit significantly accelerating
heat transfer. Additionally, while non-Newtonian parameter decreases nanofluid’s
mass transfer rate and velocity, it increases heat transfer rate.

2. FORMULATION OF THE PROBLEM

Consider uniform free stream of an incompressible Williamson nanofluid that
conducts electricity and is thermally radiant, flowing steadily in two dimensions
over a permeable stretched sheet; joule heating effects and viscous dissipation are
also discussed. Assume that plate is extending at a velocity of uw = ax(a >
0), where a is stretching parameter, and that velocity of free stream is u∞ =
bx(b > 0). The plate is subjected to a constant external magnetic field B0. It
is less probable for electrons to collide with other charged or neutral particles in
succession due to presence of a nanofluid (as opposed to an ionized gas) when an
external magnetic field is applied. This reduced electron-atom collision frequency

3



4KEMPARAJU M.C, B.LAVANYA, RAVEENDRA NAGARAJ, MAHANTESH M. NANDEPPANAVAR, AND NAGARATHNA T. K.

allows us to ignore electric field from charge polarization and effects of ion slip
and Hall. The temperature and nanoparticle concentration at moving surface are
assumed to be constant values, denoted as ( Tw ) and ( Cw ), respectively. Under
these assumptions, governing boundary-layer equations for momentum, energy,
and diffusion of thermally radiating Williamson nanofluid in presence of a free
stream can be expressed as follows:
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where, in x and y directions, respectively, u and v are the velocity components; T
is for temperature, while C is volume percentage of nanoparticles. The values of
σ,α and Cp correspond to nanofluid’s electrical conductivity, thermal diffusivity,
and specific heat capacity, respectively; DB , DT ,Kr and Γ stand for Brownian dif-
fusion coefficient, thermophoresis diffusion coefficient, chemical reaction constant
and time constant; ρ, µ and k are the density, kinematic viscosity, and thermal
conductivity of the nanofluid; qr is radiative heat flux, Γ is ratio of fluid’s heat
capacity to that of nanoparticles.
The boundary conditions associated with differential equations are:

u = Uw + uslip, v = −Vw, T = Tw, C = Cw at y = 0,

u→ ∞, T → T∞, C → C∞ as y → ∞.
(5)

where T∞ and C∞ stand for temperature and the volume percentage of far-from-
the-sheet nanoparticles, respectively. The mass suction/injection velocity is de-
noted by the word Vw. For suction, it expresses the mass to be transported at the
surface with Vw > 0, and for injection, it uses Vw < 0. The radiative heat flux qr
is determined by using the Rosseland diffusion approximation.

qr =
−4σ∗

3K∗
∂T 4

∂y
(6)

where σ∗ is Stefan-Boltzmann constant and k∗ is mean absorption coefficient. T 4

can be expressed as a linear function of T since it is expected that temperature
variations within flow are quite small: The following system of equations are set
to reduce governing equations into a system of odes:

η = y

√
a

v
, T = T∞ + (Tw − T∞)θ(η) (7)

C = C∞ + (Cw − C∞)ϕ(η), ψ =
√
av f(η) (8)
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Where,
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And associated boundary conditions becomes:

f(0) = S, f ′(0) = 1 + λf ′′(0), θ(0) = 1, ϕ(0) = 1 (12)
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3. Numerical Solution

The shooting method is numerical technique to solve boundary value prob-
lems (BVPs) for ordinary differential equations (ODEs). In boundary value prob-
lems (BVPs), boundary conditions are specified at edges of domain. This differs
from initial value problems, which typically depend on initial conditions. Given
that equations (10) to (12) are highly nonlinear, finding closed-form solutions can
be challenging, if not impossible. Consequently, these boundary value problems
are solved numerically using conventional fourth-order Runge-Kutta integration
method in conjunction with shooting technique. The core concept of shooting
method involves transforming boundary value problem into an initial value prob-
lem. To achieve this, one must make an educated guess regarding unknown initial
conditions at one of boundaries. This guessed initial condition is then used to
solve the ODE as if it were an initial value problem, utilizing standard numerical
methods such as Runge-Kutta or Euler’s method. The resulting solution spans
entire domain, allowing for comparison of value at other boundary with the ac-
tual boundary condition stipulated in problem. If the computed solution does not
satisfy required boundary condition, it indicates that initial guess was incorrect.
In this case, initial guess must be modified, and initial value problem must be
solved again. Various techniques can be employed to adjust the initial guess, in-
cluding root-finding methods like Newton’s method, which iteratively refines guess
until boundary condition at the far end is satisfied. This process is repeated until
solution meets boundary conditions at both ends within specified tolerance.

Let f1 = F, f2 = F ′
1, f3 = F ′

2, f4 = θ, f5 = θ′, f6 = ϕ, f7 = ϕ′ then
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With the boundary conditions

F1(0) = S, F2(0) = 1, F4(0) = 1, F6(0) = 6, F2(∞) = A,F4(∞) = 0, F6(∞) = 0)
(4)

To integrate (17)-(19) as an initial value problem, no need to find values of

F3(0) = p, F5(0) = q, and F7(0) = r

The values are not defined within the boundary conditions described in equation
(20). The primary objective of the shooting method is to identify suitable finite
values. To solve the boundary value problem outlined in equations (17) to (20), we
begin by making initial guesses based on a specific set of physical parameters. This
will enable us to determine f ′′(0), θ′(0), and ϕ′(0), which differ by pre-assigned
significant digits.

The last value of η∞ is finally chosen to be the most appropriate value of η∞ for
that set of parameters. The value of η∞ may vary for another set of parameters.
Once the finite value of η∞ is determined, integration is carried out easily.

Accordingly, the initial condition vector for the boundary value problem is given
by:

Y0 = [S, 1, p, 1, q, 1, r].

We took a series of values for f ′′(0), θ′(0), and ϕ′(0), and applied a fourth-
order Runge-Kutta (RK) integration scheme with a step size h = 0.001. The
above procedure was repeatedly performed until the desired degree of accuracy
10−6 was obtained.

Figure 1. Velocity
profiles for
values of A

Figure 2. Velocity
profiles for
values of S
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Figure 3. Velocity
profiles for
values of M

Figure 4. Velocity
profiles for
values of λ

Figure
5. Temperature
profiles for
values of Nt

Figure
6. Temperature
profiles for
values of Nb
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Figure
7. Temperature
profiles for
values of M

Figure 8. Temperature
profiles for
values of Ec

Figure
9. Temperature
profiles for
values of Pr

Figure
10. Temperature profiles
for
values of R
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Figure
11. Concentration
profiles for
values of Sc

Figure
12. Concentration
profiles for
values of Nb

The deviations of f ′(η) has been noticed in Fig. 1. The effect of velocity
ratio parameter on velocity distributions is an important topic in fluid dynamics,
particularly in the study of boundary layers, jets, and wakes. The velocity ratio
parameter is typically defined as the ratio of velocity of one fluid stream to another,
and it plays a critical role in determining the behavior of velocity distributions.
In boundary layer flows, the velocity ratio between free stream and the wall can
influence the thickness and shape of the boundary layer. A higher velocity ratio
generally leads to a thinner boundary layer, while a lower velocity ratio results in a
thicker boundary layer. This parameter also affects the velocity gradient near the
wall, which has implications for shear stress and heat transfer rates. In jet flows,
the velocity ratio between the jet and the surrounding fluid influences spreading
rate of the jet. A higher velocity ratio typically results in a narrower, faster jet
with less entrainment of the surrounding fluid. Conversely, a lower velocity ratio
leads to a wider jet with more mixing and entrainment. The velocity distribution
within the jet itself also depends on the velocity ratio, with higher ratios leading
to more uniform velocity profiles along the jet axis. In wake flows, such as those
behind bluff bodies, the velocity ratio between the wake and the free stream affects
the wake width and the velocity deficit. A higher velocity ratio generally results
in a narrower wake with a smaller velocity deficit, while a lower ratio leads to a
wider wake and a larger velocity deficit. The velocity distribution in the wake
region is also influenced by the velocity ratio, with significant impacts on the drag
and lift forces experienced by the object generating the wake. The velocity ratio
can significantly impact the mixing efficiency and stability of flow configurations,
such as in shear layers or between two fluid streams of different velocities. A high
velocity ratio can lead to increased shear and potential instabilities, while a lower
ratio might result in more stable, yet less mixed flows.

The wall transfer parameter, often referred to context of heat or mass transfer
at the boundary of a fluid system (such as a wall), plays a significant role in the
velocity profile of fluid flow, particularly in boundary layer theory or near-wall
phenomena in fluid dynamics. Fig. 2 explains the impression of wall transfer
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parameter on velocity distributions. Increased wall transfer (heat or mass) can
alter the boundary layer thickness and modify the velocity gradient near the wall.
Decreased wall transfer may produce a velocity profile that is closer to the ideal,
where momentum is the primary driving force, without additional thermal or con-
centration effects. The impact of magnetic parameter on velocity distributions is
significant and varies depending on the flow configuration and the strength of the
magnetic field has been observed in Fig.3. Lorentz Force: The magnetic field in-
teracts with moving charged particles in the fluid, generating a Lorentz force that
opposes the motion. This force acts as a form of drag on fluid, which leads to a
reduction in velocity of the flow. As magnetic parameter increases, this damping
effect becomes more pronounced, resulting in lower overall fluid velocities. Veloc-
ity Profile Flattening: In many MHD flows, an increase in magnetic parameter
flattens velocity profile. This means that difference in velocity between the fluid
at the boundary and the fluid in the core decreases, leading to a more uniform
flow distribution across the cross-section of the flow. Thickening of the Boundary
Layer: The presence of magnetic field can lead to an increase in boundary layer
thickness. This is because Lorentz force dampens flow near wall, which reduces
velocity gradient at boundary and causes the boundary layer to thicken. This
effect is particularly notable in Hartmann flows, where the fluid is driven through
a channel under influence of a strong magnetic field. Fig.4 describes impact of slip
parameter on f ′(η). The velocity slip parameter plays a significant role in control-
ling the behavior of fluid flow near surfaces, particularly when there is a difference
between the velocity of the fluid at the boundary (or surface) and velocity of the
boundary itself. In classical fluid mechanics, no-slip boundary conditions are typ-
ically assumed, meaning fluid velocity at a solid boundary is zero relative to the
boundary. However, in certain cases (such as microflows, rarefied gas flows, or spe-
cific porous media flows), no-slip condition is no longer valid, and velocity slip must
be considered. The velocity slip parameter λ determines degree of slip at bound-
ary, which in turn affects velocity distribution of the fluid. Here’s how velocity slip
parameter influences velocity distribution: No Slip: Velocity at the boundary is
zero, and velocity distribution grows from zero at the wall, resulting in a steep ve-
locity gradient. Partial Slip: With increasing slip parameter λ , fluid velocity near
the wall is non-zero, leading to a flatter velocity profile near the boundary and a
higher overall fluid velocity. High Slip: At high slip values, velocity profile becomes
nearly uniform, with the boundary contributing little resistance, and shear stress
near the wall decreases. Thermophoresis refers to movement of particles in a fluid
due to a temperature gradient. The consequences of thermophoresis parameter on
θ(η) is showed in Fig. 5. When considering the effect of the thermophoresis pa-
rameter on temperature distributions in a fluid,θ(η) increases and particularly in
contexts like heat transfer and fluid dynamics, several key points can be observed:
Temperature Gradient Influence: The thermophoresis parameter is proportional
to the temperature gradient within the fluid. A higher temperature gradient en-
hances the thermophoretic force, which can cause particles to move more quickly
from regions of high temperature to regions of lower temperature. Heat Transfer
Enhancement: In systems where thermophoresis is significant, particles that move
towards cooler regions can affect local temperature distribution. This movement
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can either enhance or reduce overall heat transfer depending on system’s specific
conditions, such as nature of fluid and boundary conditions. Boundary Layer Ef-
fects: In boundary layer flows, thermophoresis can alter temperature distribution
near wall. If particles are drawn towards a cooler boundary, they can create a layer
of particles that insulates or increases thermal resistance, potentially affecting the
temperature profile near the surface. Non-Uniform Temperature Profiles: The
presence of thermophoresis can lead to non-uniform temperature profiles within
the fluid. For instance, in systems with a strong temperature gradient, particles
may cluster in certain regions, leading to localized changes in temperature dis-
tribution. Impact on Cooling/Heating Efficiency: In applications such as cooling
technologies, where particles are introduced into a fluid for heat removal, the ther-
mophoresis effect can influence how effectively heat is transferred. By controlling
the thermophoresis parameter, engineers can optimize cooling or heating process.
Analytical and Numerical Modeling: In many studies, effect of the thermophore-
sis parameter on temperature distributions is analyzed through analytical models
or numerical simulations. These models help predict how varying the parameter
impacts the overall temperature field within the fluid. Brownian motion refers
to random motion of particles suspended in a fluid, resulting from collisions with
molecules of fluid. The changes in θ(η) has shown in Fig. 6. In the context of heat
transfer and fluid dynamics, the Brownian motion parameter plays a significant
role in influencing temperature profile of the fluid-particle system. Diffusion of
Particles: The Brownian motion parameter is directly related to intensity of the
random movement of particles. Higher Brownian motion results in more vigor-
ous diffusion of particles throughout the fluid. This enhanced mixing can lead
to a more uniform temperature distribution, as the particles disperse heat more
effectively. Thermal Conductivity Enhancement: In nanofluids (fluids containing
nanoparticles), the Brownian motion of nanoparticles contributes to an increase
in effective thermal conductivity. As particles move randomly, they carry energy
across the fluid, which can smooth out temperature gradients and alter the tem-
perature profile. Temperature Profile Smoothing: Due to the enhanced mixing and
energy transfer caused by Brownian motion, the temperature profile in the fluid
tends to become smoother. Sharp temperature gradients are reduced, and the
temperature distribution becomes more homogeneous. Boundary Layer Effects:
In boundary layer flows, Brownian motion can affect the temperature distribution
near the solid surface. The random movement of particles can disrupt the thermal
boundary layer, leading to a change in the temperature gradient close to the wall.
This effect can either increase or decrease the heat transfer rate, depending on the
system’s specifics. Impact on Nanofluid Heat Transfer: In nanofluids, Brownian
motion of nanoparticles is a key factor in enhancing heat transfer. By increasing
the Brownian motion parameter, thermal conductivity of fluid improves, which can
lead to a more efficient heat transfer process. Consequently, temperature profile
may show a more rapid decrease in temperature with distance from heat source.
On-Uniform Temperature Distribution: In some cases, particularly at low Brown-
ian motion, particles may not disperse evenly, leading to non-uniform temperature
distributions. This can result in localized hot or cold spots within fluid, impacting
the overall heat transfer efficiency. Fig. 7 addresses the influence of magnetic
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parameter on temperature profile. When studying the impact of the magnetic
parameter on the temperature profile in such a system, several key effects can
be observed. The magnetic parameter plays a significant role in modifying the
temperature profile of a conducting fluid by influencing fluid motion, altering heat
transfer rates, and affecting the thermal boundary layer. A stronger magnetic field
typically leads to a more stratified temperature distribution with steeper gradi-
ents, particularly in the vicinity of heated or cooled surfaces. The influence of
the Eckert number on temperature distributions can be understood through the
following points through the Fig. 8. Viscous Dissipation: The Eckert number
quantifies the contribution of viscous dissipation to the overall heat transfer. In
flows with a high Eckert number, the viscous dissipation is significant, leading to
the generation of heat within the fluid. This additional heat alters the temperature
distribution, typically increasing the temperature in the flow field. Temperature
Rise in Boundary Layers: In boundary layers, where viscous effects are more pro-
nounced, a high Eckert number can lead to a substantial temperature rise near
the wall. This is because the kinetic energy of the fluid is converted into thermal
energy through viscous dissipation, which heats up the fluid near the boundary.
Impact on Thermal Boundary Layer: The presence of a high Eckert number can
thicken the thermal boundary layer due to the additional heat generated by vis-
cous dissipation. This results in a steeper temperature gradient near the wall and
affects the overall temperature distribution within the boundary layer. Tempera-
ture Distribution in Compressible Flows: In compressible flows, especially at high
velocities (such as in supersonic or hypersonic flows), the Eckert number becomes
more significant. The kinetic energy of the flow is substantial, and viscous dissi-
pation can lead to a considerable increase in temperature, particularly in shock
waves or regions of high shear. This can result in complex temperature profiles
with sharp gradients. Effect on Heat Transfer Efficiency: A higher Eckert number
generally reduces the efficiency of heat transfer processes. The additional heat
generated by viscous dissipation must be accounted for in the energy balance,
leading to a modified temperature distribution. This effect is particularly impor-
tant in systems where precise temperature control is critical, such as in aerospace
engineering or high-speed flow systems. Flow Regime Dependence: The influence
of the Eckert number on temperature distribution depends on the flow regime.
In laminar flows, the effect of viscous dissipation is more localized, leading to
a more predictable increase in temperature near solid boundaries. In turbulent
flows, the effect can be more widespread due to the mixing and redistribution of
heat throughout the flow. The deviations of temperature distributions with im-
pact of Prandtl number (Pr) are displayed in Fig. 9. The Prandtl number plays
crucial role in determining relative thicknesses of velocity and thermal boundary
layers in fluid flows. The effect of Prandtl number on temperature profiles can be
understood through following points: The Prandtl number indicates relationship
between velocity and thermal boundary layers, which represents relative thickness
of velocity boundary layer (where momentum is diffused) and thermal boundary
layer (where heat is diffused). A higher Prandtl number implies that momentum
diffuses more rapidly than heat, leading to a thinner thermal boundary layer than
velocity boundary layer. Conversely, a lower Prandtl number indicates that heat
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diffuses more quickly, resulting in thicker thermal boundary layer. High Prandtl
Number ( Pr¿1): In fluids with high Prandtl numbers (such as oils), thermal dif-
fusivity is low compared to momentum diffusivity. This leads to a thin thermal
boundary layer. As a result, temperature gradient near wall is steep, meaning
that temperature changes occur more rapidly over a smaller distance from the
wall. The velocity boundary layer, being thicker, influences overall flow, but tem-
perature profile is dominated by sharp gradients within the thin thermal layer.
Low Prandtl Number (Pr¡ 1): In fluids with low Prandtl numbers (such as liq-
uid metals), thermal diffusivity is high relative to momentum diffusivity. This
results in a thicker thermal boundary layer compared to velocity boundary layer.
The temperature gradient near wall is more gradual, leading to a smoother tem-
perature profile. The thicker thermal boundary layer allows for more extended
regions of heat transfer, spreading temperature distribution over a larger distance.
Prandtl Number Equal to 1 ( Pr 1): When Prandtl number is around 1 (e.g.,
in air), the thicknesses of velocity and thermal boundary layers are comparable.
In such cases, temperature and velocity profiles develop simultaneously, leading
to a balanced and consistent distribution of temperature and velocity gradients
across boundary layers. Impact on Heat Transfer Rate: The Prandtl number di-
rectly influences heat transfer rate in a fluid. For high Prandtl number fluids,
steep temperature gradients in thin thermal boundary layer result in higher local
heat transfer rates near wall. In contrast, with their gradual temperature gradi-
ents, low Prandtl number fluids tend to have a lower local heat transfer rate but
over a broader region. Convection-Dominated vs. Conduction-Dominated Heat
Transfer: In convection-dominated systems (high Prandtl number), fluid flow sig-
nificantly affects temperature profile, with heat being carried away from boundary
by convection. In conduction-dominated systems (low Prandtl number), temper-
ature profile is more influenced by heat conduction, leading to a smoother and
more uniform distribution. Fig. 10 can be inferred the changes in temperature
profile with influence of radiation parameter. The θ(η) enhances when we accel-
erate because the radiation parameter plays an important role in heat transfer
when thermal radiation significantly affects energy exchange within a system. It
quantifies impact of radiative heat transfer compared to other modes, such as con-
duction and convection. The radiation parameter plays a crucial role in influencing
temperature profile in systems where radiative heat exchange is significant—this
includes high-temperature processes, porous media, and applications involving ra-
diative cooling or heating. When radiation parameter is low, conduction becomes
predominant mode of heat transfer, rendering radiative effects negligible. In such
scenarios, temperature distribution adheres to the classical pattern of conductive
heat transfer. For straightforward cases, like steady-state conduction through a
slab with constant thermal conductivity, the temperature profile typically exhibits
a linear progression. In this context, conductive heat flow primarily influences
temperature variations, while radiative heat transfer minimizes the overall tem-
perature gradient. The deviations of ϕ(η) is indicated in Fig. 11. When we rise
Sc values concentration decelerates. The Schmidt number affects thickness of con-
centration boundary layer in systems involving mass transfer, such as in chemical
reactors or air-water interfaces. For high Sc, boundary layer is thin, meaning that
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diffusion occurs over a small distance from surface, which causes concentration
gradient to be steep near interfaces. For low Sc, the boundary layer is thicker,
and solute spreads over larger distance, resulting in a more gradual concentration
change. The consequences of Brownian motion (Nb) on ϕ(η) is displayed in Fig.12.
Brownian motion leads to a decrease in concentration gradients and promotes an
even distribution of particles by diffusing them from areas of high concentration
to low concentration. Because Brownian motion is closely linked to the process of
diffusion, where particles move from areas of high concentration to areas of low
concentration. Due to random collisions, particles spread out over time, leading to
a more uniform concentration. Nb helps in mixing of substances at the microscopic
level, leading to a more uniform concentration. Without it, particles would take
longer to mix, especially in liquids or gases. Initially, in areas of high concentra-
tion, Nb causes particles to move away, reducing concentration locally. Over time,
this leads to an even distribution across system. If there is no external force (like
gravity or convection), Brownian motion will eventually lead to equilibrium, where
concentration of particles is same throughout the system. Nb is more noticeable
in smaller particles. Larger particles move more slowly due to their higher mass,
which reduces effect of Nb on their concentration over time.
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