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Abstract. Controllability of interconnected linear systems have been an

area of interest for the past few decades as it has applications in numerous
fields of science and technology. Classical theory of control deals with systems

with known parameters. In practical applications it may not be possible to

estimate exact parameter values. Hence the available numerical conditions
like Kalman’s rank condition, PBH criteria etc. for controllability are hard

to verify. To address this difficulty, properties that are preserved for all but

few values of parameters, i.e., generic properties must be considered. In [9],
Commault et al. has provided a necessary and sufficient condition for the

generic controllability of a homogeneous networked system. In this paper, we

have given an example to show that this result may not be true in general.
Another example is provided to show that one of the conditions in this result

is not necessary. Also, we have obtained some necessary conditions for the
generic controllability of a heterogeneous networked system. The obtained

results are substantiated with examples.

1. Introduction

During the past few decades, an increase in interest is observed in controllability
studies. The notion of controllability was introduced by R.E. Kalman in the second
half of the 20th century[17, 18] which measured the ability of a dynamical system
to get to a desired final state from an arbitrary initial state in a finite time. It dealt
with single higher dimensional systems with known parameter values. In practical
applications, as the parameter values governing the system properties may vary
or never be known precisely, a more comprehensive framework for controllability,
called structural controllability was established by C.T. Lin[19]. The notion of
structural controllability emphasized the important role possessed by the network
structure in the controllability of dynamical systems. Numerous studies have been
done with regard to many kinds of systems to understand these concepts in detail
over the past few decades and various conditions have been obtained. Over the
course, it became evident that the modelling of real life systems required complex
networks[5, 28, 31].
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The studies of individual systems connected together can be traced back to the
work done by Gilbert [13] which was then followed by many others as the con-
trollability and observability of interconnected systems became a topic of interest
[6, 8, 10, 12]. For large scale networks, it is almost impossible to obtain the exact
parameter values describing the dynamics of the system. Structural controllabil-
ity was introduced to overcome the difficulties caused by this fact. Following the
seminal work by Lin in 1974, the conditions obtained for single input systems were
enhanced to multi input systems and studied in detail by Glover et al.[14] as well
as Shields et al. [27]. Later, the proof of the structural controllability theorem was
simplified by Linnemann[20]. The idea of strong structural controllability, which
is the controllability of the system for any values of the indetrminate parameter
values of the system was also introduced and some necessary and sufficient con-
ditions were given by Mayeda et al.[23]. Hosoe et al.[16] modified the algebraic
condition for structural controllability using the irreducibility condition on the
adjoined system matrices. A graph theoretic interpretation of the condition that
the structured matrix obtained by adjoining the state matrix and control matrix
having full rank was obtained by Mayeda[22]. In [9], Commault et al. tries to
study a new notion of controllability of a system, named generic controllability
where the system matrices are fixed for each nodes but the links between nodes
have unknown weights. This is a relatively new concept in the area of controlla-
bility of inter connected systems. However, the conditions obtained are structural
as they are based on the composition of the network graph. As the applications of
complex networks in various fields of science and technology increased, studies on
controllability of networks of dynamical systems also increased. New tools were
introduced to study the structural controllability of networks and is still an active
area of research [4, 7, 21, 25, 24, 34]. The time-line of research in the area of
structural systems can be traced through the studies of Dion et al.[11], Ramos et
al.[26] and Xiang et al.[32].

Along with the studies on structural controllability of networked systems, nu-
merous conditions for state controllability of interconnected systems were obtained
in this time period[1, 3, 2, 15, 29, 30, 33]. Commault et al. [9] examined the generic
controllability of inter connected systems where individual systems having same
dynamics are connected together and obtained a necessary and sufficient condi-
tion for generic controllability of networked systems. In this paper, we have proved
that these conditions are necessary for the generic controllability of networked sys-
tems having heterogeneous dynamics. The obtained results are substantiated with
examples. The sections are arranged as follows: Preliminaries in Section 2 are fol-
lowed by formulation of the controllability problem in section 3. Some necessary
conditions for generic controllability of networked systems is obtained in Section
4. The obtained results are illustrated with examples. Concluding remarks and
future works are stated in section 5.

2. Notations and Preliminaries

The field of real numbers is denoted by R and the linear space containing n-
vectors of real numbers is denoted by Rn. I represents the identity matrix of
appropriate order, the n × 1 vector with 1 at the ith position and rest all zeros
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is denoted by ei and the set of all m× n matrices with real entries is denoted by
Rm×n. Consider the following system

ẋ(t) = Ãx(t) + B̃u(t) (2.1)

in which x(t) ∈ Rn is the state vector, u(t) ∈ Rm denotes the input vector.

Ã ∈ Rn×n, B̃ ∈ Rn×m denotes the state matrix and the control matrix of the
system (2.1). A directed graph, G = (V,E) can be correlated with (2.1). V =
V1 ∪ V2 represents vertex set, where V1 is the state vertex set and V2 is the con-
trol vertex set. A path in graph G, from vertex vo to vm is a chain of edges
(v0, v1), (v1, v2), . . . (vm−1, vm), where v0, v1, . . . , vm ∈ V and (vi−1, vi) ∈ E, for
i = 1, 2, . . . ,m. If the initial vertex of a path belong to the V2 and the end vertex
belong to the V1, then the path is called control-state path. A stem is a control-state
path which does not pass through the same vertex twice. A system in which every
state vertex is the end vertex of a control state path is called control connected.

3. Problem Formulation

Consider a networked system, with N state nodes and m control nodes inter-
acting via weighted directed connections. The weighted directed graph G (N ) =
(VN , EN ), called the network graph can be used to represent the network, N . The
vertex set of the network graph is given by, VN = {v1, v2, . . . , vN}∪{u1, u2, . . . , um},
where v′is and u′

is represent the state nodes and control nodes respectively. The
directed connections between the nodes is represented by the edge set EN . Edge
weights assigned to the network graph quantifies the strength of the communica-
tion between the individual nodes.

The node vi represents a dynamical system with n states, a scalar input wi,
and a scalar output yi. The dynamics of the node vi is given by

ẋi(t) = Aixi(t) +Biwi(t)

yi(t) = Cixi(t)
(3.1)

where Ai ∈ Rn×n for each i and Bi(respectively, Ci) is a n− dimensional column
vector (respectively, a row vector) for each i. The dynamic state of each node is
defined by the matrices (Ai, Bi, Ci).

Combining the state space model representing the dynamics of each node with
the composition of the network graph, we get a global system

∑
N of state space

dimension Nn and m control inputs. The input signal for the node i is given by
the weighted combination of control signals in line with the network graph

wi(t) =

N∑
i=1

γijyj(t) +

m∑
l=1

δilul(t) (3.2)

where γij represents the connection strength of the link from node vj to node vi, δil
represents the connection strength of the link from control node ul to the state node
vi. γij and δil becomes zero when there is no edge in the network graph between
the state nodes or from a control node to a state node respectively. Let Γ =
[γij ]N×N , i = 1, 2, . . . , N, j = 1, 2, . . . , N and ∆ = [δil]N×m , i = 1, 2, . . . , N, l =
1, 2, . . . ,m represent network topology.
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γ21 γ32

δ11 δ31
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Figure 1. Network graph with Γ =

 0 0 0
γ21 0 0
γ31 γ32 0

 and ∆ =

δ110
δ31

.
Then the compact form of

∑
N is given by∑

N
: ẋ(t) = Fx(t) +Gu(t) (3.3)

where x(t) = (x1(t), . . . , xm(t))
T

and u(t) = (u1(t), . . . , um(t))
T
, with (.)T indi-

cates the transpose of a matrix. The matrices F and G representing the state and
control matrices of

∑
N respectively have dimensions Nn×Nn and Nn×m. They

are of the following form:

F =

A1 + γ11B1C1 γ12B1C2 . . . γ1NB1CN

...
...

. . .
...

γN1BNC1 γN2BNC2 . . . AN + γNNBNCN


and

G =

 δ11B1 δ12B1 . . . δ1mB1

...
...

. . .
...

δN1BN δN2BN . . . δNmBN


In this work, our aim is to analyse the controllability of

∑
N , using the dynamics

of the individual systems. i.e., Using (Ai, Bi, Ci)
′s, and structure of the networked

system. The matrices (Ai, Bi, Ci)
′s are assumed to be exact and known, but the

network communication strength are not fixed precisely. i.e., we know whether
the entries are zero or non-zero, but does not know the exact parameter values.

4. Main Results

In [9], Commault et al. give the following set of conditions which are neces-
sary and sufficient for the generic controllability of interconnected systems with
identical dynamical nodes.

Theorem 4.1. [9] Consider a network N with N internal nodes, m control nodes
with N > m, and its graph G (N ). Assume that all nodes are identical, SISO,
nth-order dynamical systems defined by matrices A,B,C. The global system ΣN
is generically controllable if and only if the following conditions hold:

(i) The pair (A,B) is controllable.
(ii) The pair (C,A) is observable.
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(iii) The graph G (N ) is control-connected.
(iv) The internal nodes of G (N ) can be covered by a disjoint set of stems and

cycles.

We will prove that the first three conditions in Theorem 4.1 are necessary for
the generic controllability of networked systems with non-identical nodes.

Theorem 4.2. If the pair (Ai, Bi) is not controllable for some i, say i0, then the
global system is not generic controllable.

Proof: Suppose that (Ai, Bi) is not controllable for some i, say i0 , then by PBH
criterion there exists a scalar λ and a row vector v such that v (Ai0 − λI) = 0 and
vBi0 = 0. Now consider the vector ei0 ⊗ v, where ei0 ∈ R1×N with ith0 entry 1 and
all other entries zero. Then

(ei0 ⊗ v) (F − λI) = 0 and (ei0 ⊗ v)G = 0

i.e., (F,G) is not controllable.

Example 4.3. Consider a networked system with state matricesA1 =

[
1 0
1 1

]
, A2 =[

1 1
0 1

]
and control matrices B1 = B2 =

[
0
1

]
. The output matrices are given

by C1 = C2 =
[
1 0

]
. Now for Γ =

[
γ11 γ12
γ21 γ22

]
and ∆ =

[
δ11
δ21

]
we get F =

1 0 0 0
1 1 + γ11 γ12 0
0 0 1 1
0 γ21 γ22 1

 and G =


0
δ11
0
δ12

. Here (A1, B1) is controllable but (A2, B2)

is not controllable. Therefore by Theorem4.2 the given system is not controllable.
By PBH criteria, we can verify this, as the matrix [F − I,G] has rank at-most 3
only.

Theorem 4.4. If N > m, for the global system to be generic controllable atleast
one of the pairs (Ai, Ci) , i = 1, 2, . . . , N must be observable.

Proof: Suppose that (Ai, Ci) is not observable for all i = 1, 2, . . . , N . Then by
PBH criteria there exists a scalar λ and a column vector vi such that (Ai − λI) vi =
0 and Civi = 0. Now consider the vector (ei ⊗ vi), where ei ∈ R1×N with ith entry
1 and all other entries zero. Then

(F − λI) (ei ⊗ vi) = 0

Then rank [F − λI,G] ≤ N(n−1)+m < Nn. Therefore (F,G) is not controllable.

Example 4.5. Consider a networked system with state matricesA1 =

[
1 0
1 1

]
, A2 =[

1 1
0 1

]
and control matrices B1 =

[
1
1

]
, B2 =

[
0
1

]
. The output matrices are given

by C1 =
[
1 0

]
and C2 =

[
0 1

]
. Now for Γ =

[
γ11 γ12
γ21 γ22

]
and ∆ =

[
δ11
δ21

]
we get
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F =


1 + γ11 0 0 γ12
1 + γ11 1 0 γ12

0 0 1 1
γ21 0 0 1 + γ22

 and G =


δ11
δ11
0
δ12

. Here both (A1, C1) and (A2, C2)

are not observable. Also N > m. Therefore by Theorem4.4 the given system is
not controllable. By PBH criteria, we can verify this, as the matrix [F − I,G] has
rank at-most 3 only.

Theorem 4.6. If the graph G (N ) is not control connected, then the global system
is not generic controllable.

Proof: Suppose that G (N ) is not control connected. Rearrange the nodes so
that the first k nodes represent the non control connected nodes. Then the matrices

Γ and ∆ can be expressed as Γ =

[
Γ11 0
Γ21 Γ22

]
and ∆ =

[
0k×k

∆2

]
where Γ11 is a k×k

matrix. Then F and G are of the form F =

[
F11 0
F21 F22

]
and G =

[
0kn×kn

G2

]
where

F11 is a kn× kn matrix. Now for any left eigenvector v of F11, ṽ =
[
v 0n(N−k)

]
is a left eigenvector of F with vG = 0. Therefore (F,G) is not controllable.

Example 4.7. Consider a networked system with state matricesA1 =

[
1 0
1 1

]
, A2 =[

1 1
0 1

]
and control matrices B1 =

[
1
1

]
, B2 =

[
0
1

]
. The output matrices are given

by C1 =
[
0 1

]
and C2 =

[
1 0

]
. Here both (A1, C1) and (A2, C2) are observable.

Also (A1, B1) ans (A2, B2) are controllable. Now let Γ =

[
0 γ12
0 0

]
and ∆ =

[
δ11
0

]
.

u1 v1 v2

Figure 2. Clearly, G (N ) is not control connected.

Then by Theorem4.6 the given system is not controllable. For, we have F =
1 0 γ12 0
1 1 γ12 0
0 0 1 1
0 0 0 1

 and G =


δ11
δ11
0
0

. By PBH criteria, we can verify that the given

system is not controllable, as the matrix [F − I,G] has rank at-most 3 only.

5. Conclusion and Future works

The generic controllability of interconnected linear systems with heterogeneous
dynamics is studied. It has been shown that some of the necessary conditions
for the generic controllability of homogeneous networked systems stay necessary
for heterogeneous networked systems also and the obtained results are supple-
mented with suitable examples. In this article, individual systems are considered
as single-input single-output systems. Hereafter we intend to analyse the generic

6



GENERIC CONTROLLABILITY OF NETWORKED SYSTEMS

controllability of networked systems where the individual nodes are multi-input
multi-output systems.
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